K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2020

Gọi 3 số đó là 2x - 2 ; 2x ; 2x + 2

Nên tích của 3 số đó là 

\(\left(2x-2\right)\left(2x\right)\left(2x+2\right)=2\left(x-1\right).2\left(x\right).2\left(x+1\right)=8\left(x-1\right)\left(x\right)\left(x+1\right)⋮8\)

Suy ra đpcm

25 tháng 6 2020

Gọi 3 số chẵn liên tiếp là 2a , 2a+2 , 2a+4

Tích 3 số này là

2a(2a+2)(2a+4)

=(4a2+4a)(2a+4)

=8a3+8a2+16a2+16a

=8a(a+1)(a+2) chia hết cho 8

=> ĐPCM

30 tháng 10 2017

Chứng minh rằng:

a, tổng của ba số chẵn liên tiếp thì chia hết cho 6.

b, tổng của ba số lẻ liên tiếp không chia hết cho 6.

30 tháng 10 2017

Chứng minh rằng:

a, tổng của ba số chẵn liên tiếp thì chia hết cho 6.

b, tổng của ba số lẻ liên tiếp không chia hết cho 6.

8 tháng 12 2015

Vì trong 2 số liên tiếp luôn luôn có 1 số chắn.Mà mọi số chẵn đều luôn chia hết cho 2

=>tích 2 số liên tiếp chia hết cho 2

b)Vì trong 3 sô liên tiếp luôn có 1 số chia hết cho 3.

=>tích 3 sô liên tiếp luôn chia hết cho 3(1)

Từ câu a ta đã Cm đc tích 2 số liên tiếp luôn chia hết cho 2 hay tích 3 số liên tiếp cũng chia hết cho 2(2)

Mà(3;2)=1(3)

Từ (1), (2) và (3)

=>Tích 3 số liên tiếp luôn chia hết cho 2.3 =6 

nhớ tick nha

8 tháng 12 2015

a) Gọi 2 số tự nhiện liên tiếp là n; n+1 

Ta có: 

Nếu n có dạng 2k thì n.(n+1) 

= 2k.(2k+1) chia hết cho 2 (vì 2k chia hết cho 2)

Nếu n có dạng 2k + 1 thì n.(n+1) 

= (2k+1).(2k+1+1)

= (2k+1).(2k+2) chia hết cho 2 (vì 2k+2 chia hết cho 2)

tick nhé

7 tháng 9 2017

a. Hai số chẵn liên tiếp có dạng là 2k và 2(k+1) với k là số nguyên .

Tích hai số này là 4k(k+1) . Ta có k(k+1) luôn chia hết cho 2 => 4k(k+1) luôn chia hết cho 8 => đpcm

c)Gọi 5 số tự nhiên liên tiếp là a,a+1,a+2,a+3,a+4

Ta có: a+a+1+a+2+a+3+a+4 =(a+a+a+a+a)+(1+2+3+4) =5.a+10 =5.(a+2) chia hết cho 5

Vậy tổng của 5 số tự nhiên liên tiếp chia hết cho 5

9 tháng 8 2018

4*2=8

2+5=6 ko chia het cho 4

0,1,2,3,4

22 tháng 1 2020

C)gọi 3 số nguyên liên tiếp lần lượt là a, a+1 ,a+2

ta có: 

a+(a+1)+(a+2)

=3a+3

=3(a+1) => chia hết cho 3 

22 tháng 1 2020

d) Gọi 5 số nguyên liên tiếp ần lượt là a, a+1, a+2, a+3, a+4 

Ta có: a + a+1 + a+2 +a+3 +a+4

         =5a +10

        =5(a+2) => chi hết cho 5

2 tháng 8 2015

Gọi 2 số chẵn liên tiếp là 2n, 2n +2 ( n thuộc N ) 
Ta có : Tích của chúng là A(n) = 2n .( 2n + 2 )
= 2 .n .2 .( n + 1 )
= 2 .2 .n .( n + 1 )
= 4n .( n +1 )
Ta có : 4 chia hết cho 4
n .( n + 1 ) chia hết cho 2 ( vì n ; n + 1 là 2 số tự nhiên liên tiếp )
=> A(n) chia hết cho 8
Vậy tích 2 số chẵn liên tiếp chia hết cho 8 .

11 tháng 11 2018

1.

\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)

Tích 5 số tự nhiên liên tiếp sẽ chia hết cho 3,5

Ngoài ra trong 5 số này sẽ luôn tồn tại 2 ít nhất 2 số chẵn, trong đó có 1 số chia hết cho 4

Do đó tích 5 số tự nhiên liên tiếp luôn chia hết cho 2*3*4*5=120

2.(Tương tự)

3.Trong 3 số chẵn liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 4 nên nó chia hết cho 2*2*4=16

Lại có trong 3 số chẵn liên tiếp luôn tồn tại 1 số chia hết cho 3(cái này viết số đó dưới dang \(x\left(x+2\right)\left(x+4\right)\)rồi xét 3 trường hợp với x=3k, x=3k+1 và x=3k+2)

Do đó tích 3 số chẵn liên tiếp chia hết cho 3*16=48.

4.

Trong 4 số chẵn liên tiếp luôn tồ tạ 1 số chia hết cho 4 và 1 số chia hết cho 8, dó đó tích này chia hết cho 2*2*4*8=128

Lại có trong 4 số chẵn liên tiếp tồn tại 1 số chia hết cho 3( làm như phần trên)

Do đó tích chia hết cho 3*128=384

5.

\(m^3-m=m\left(m-1\right)\left(m+1\right)\)

Đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3

Nên \(m^3-m\)chia hết cho 2*3=6