\(\sqrt{a}+\sqrt{b}\le2\sqrt{\frac{a+b}{2}}\); a; b không âm 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

Áp dụng BĐT Cauchy ta có : \(2\ge a^2+b^2\ge2\sqrt{a^2b^2}=2ab\Rightarrow ab\le1\)

Áp dụng BĐT Bunhiacopxki : 

\(\left(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\right)^2\le\left(a^2+b^2\right)\left[3\left(a^2+b^2\right)+12ab\right]\)

\(\le2\left(3.2+12.1\right)=36\)

\(\Rightarrow a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le6\)

Dấu "=" xảy ra khi a = b = 1

12 tháng 2 2019

ÁP DỤNG BĐT CÔ SI ,TA CÓ:

\(\sqrt{3a\left(a+2b\right)}\le\frac{3a+\left(a+2b\right)}{2}=2a+b\)\(\Leftrightarrow a\sqrt{3a\left(a+2b\right)}\le a\left(2a+b\right)=2a^2+ab\left(1\right)\) 

(VÌ a,b khong âm). C/M TƯƠNG TỰ TA CÓ \(b\sqrt{3b\left(b+2a\right)}\le2b^2+ab\left(2\right)\) 

TA CÓ  :\(2ab\le a^2+b^2\le2\left(3\right)\).TỪ (1),(2),(3)  TA CÓ;

\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le2a^2+2b^2+ab+ab\le\)\(2\left(a^2+b^2\right)+2ab\le4+2=6\) 

DẤU ĐẲNG THỨC XẢY RA KHI a=b=1

19 tháng 3 2017

Ha ~! Vẫn còn sót bài này

\(BDT\Leftrightarrow\frac{1-a}{1+a}+\frac{1-b}{1+b}+2\sqrt{\frac{\left(1-a\right)\left(1-b\right)}{\left(1+a\right)\left(1+b\right)}}\)

\(\le\frac{1-a-b}{1+a+b}+1+2\sqrt{\frac{1-a-b}{1+a+b}}\)

Và \(\frac{2\left(1-ab\right)}{1+ab+a+b}+2\sqrt{\frac{1+ab-a-b}{1+ab+a+b}}\)\(\le\frac{2}{1+a+b}+2\sqrt{\frac{1-a-b}{1+a+b}}\)

Đặt \(\hept{\begin{cases}u=ab\\v=a+b\end{cases}\left(u,v\ge0\right)}\) khi đó cần c/m:

\(\frac{2\left(1-u\right)}{1+u+v}+2\sqrt{\frac{1+u-v}{1+u+v}}\le\frac{2}{1+v}+2\sqrt{\frac{1-v}{1+v}}\)

Biến đổi tương đương ta có: 

\(\frac{1+u-v}{1+u+v}-\frac{1-v}{1+v}\le\frac{u\left(2+v\right)}{\left(1+v\right)\left(1+u+v\right)}\left(\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\right)\)

\(\Leftrightarrow\frac{2uv}{\left(1+u+v\right)\left(1+v\right)}\le\frac{u\left(2+v\right)}{\left(1+v\right)\left(1+u+v\right)}\left(\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\right)\)

Nếu \(u=0\) BĐT hiển nhiên đúng. Với \(u>0\) BĐT tương đương với:

\(\frac{2v}{2+v}\le\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\left(1\right)\)

Mà khi \(u>0\) ta có: \(\frac{1+u-v}{1+u+v}\ge\frac{1-v}{1+v}\)

Nên \(\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\ge2\sqrt{\frac{1-v}{1+v}}=2\sqrt{-1+\frac{2}{1+v}}\)

Hơn nữa ta có: \(v\le\frac{4}{5}\Rightarrow\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\ge2\sqrt{-1+\frac{2}{1+\frac{4}{5}}}=\frac{2}{3}\)

Ngoài ra do \(v\le\frac{4}{5}< 1\Rightarrow\frac{2v}{1+v}=\frac{2}{\frac{2}{v}+1}< \frac{2}{3}\)

Do vậy \(\left(1\right)\) đúng, BĐT đầu được c/m