Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình sẽ cho đề bài khác ( nhưng vẫn giống dạng bài của bạn) rồi bạn áp dụng vào đề bài của mình rồi làm bài của bạn nhé!
Đề bài của mình:Chứng minh: \(\sqrt{2}\) là số vô tỉ?
Giả sử √2 là số hữu tỉ
=> √2 = a/b với a, b nguyên và a/b tối giản hay (a ; b) = 1 (1)
√2 = a/b
<=> 2 = a²/b²
<=> b² = a²/2
=> a² chia hết cho 2
=> a chia hết cho 2 (vì 2 là số nguyên tố) (2)
=> a = 2k. Thay vào :
2 = a²/b²
<=> 2 = (2k)²/b²
<=> b² = 2k²
=> b² chia hết cho 2
=> b chia hết cho 2 (3)
Từ (2) và (3) => ƯC (a ; b) = 2
=> Mâu thuẫn (1)
=> Điều giả sử là sai
=> √2 là số vô tỉ
bạn cứ tra cứu cách làm này của mình rồi áp dụng vào bài của bạn nhé!!!!!
Bài 3: Gọi số học sinh giỏi,khá,trung bình lần lượt là a,b,c
Theo bài ra ta có : \(\dfrac{a}{b}=\dfrac{2}{3}\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}\); \(\dfrac{b}{c}=\dfrac{4}{5}\Rightarrow\dfrac{b}{4}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a}{2}=\dfrac{b}{3};\dfrac{b}{4}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}\); \(a+b+c=35\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a+b+c}{8+12+15}=\dfrac{35}{35}=1\)
Ta có : \(\dfrac{a}{8}=1\Rightarrow a=8\)
Làm tương tự ta tính được : \(b=12;c=15\)
Vậy số học sinh giỏi là 8 bạn
Số học sinh khá là 12 bạn
Số học sinh trung bình là 15 bạn
Bài 1:
\(\sqrt{1}-\sqrt{4}+\sqrt{9}-\sqrt{16}+\sqrt{25}-\sqrt{36}+.....-\sqrt{400}\)
\(=1-2+3-4+5-6+.....-20\)
\(=\left(1-2\right)+\left(3-4\right)-\left(5-6\right)+.....+\left(19-20\right)\)
\(=\left(-1\right)\times\dfrac{\dfrac{\left(20-1\right)\times1+1}{2}}{2}\)
\(=\left(-1\right)\times10\)
\(=-10\)
Dễ thế này mà ko ai lm à
Chúc bn học tốt
a)x+1/x=1 nên x=1-1/x
=>x=(x-1)/x=>x2-x=-1=>x(x-1)=-1(vô lí )nên không có giá trị x
b)x+2/x=5 nên x=5-2/x=
a) Ta có \(\sqrt{17}\)>\(\sqrt{16}\)
\(\sqrt{26}\)>\(\sqrt{25}\)
=>\(\sqrt{17}\)+\(\sqrt{26}\)+1>\(\sqrt{16}\)+\(\sqrt{25}\)+1
=>\(\sqrt{17}\)+\(\sqrt{26}\)+1> 4+ 5 +1
=>\(\sqrt{17}\)+\(\sqrt{26}\)+1 >10 hay >\(\sqrt{100}\)
=>\(\sqrt{17}\)+\(\sqrt{26}\)+1>\(\sqrt{99}\)
b) \(\frac{1}{\sqrt{1}}\)=1 >\(\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}\)>\(\frac{1}{\sqrt{100}}\)=\(\frac{1}{10}\)
....................................
\(\frac{1}{\sqrt{100}}\)=\(\frac{1}{10}\)
=>\(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+...+\(\frac{1}{\sqrt{100}}\)>\(\frac{1}{10}\)+\(\frac{1}{10}\)+...+\(\frac{1}{10}\)(có 100 số \(\frac{1}{10}\))
=>\(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+...+\(\frac{1}{\sqrt{100}}\)> \(\frac{100}{10}\)=10
\(a)\) Ta có :
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)
Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
Chúc bạn học tốt ~
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(A=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)
\(A=1+\frac{4}{\sqrt{x}-3}\)
để \(A\in Z\)thì \(\frac{4}{\sqrt{x}-3}\in Z\)
\(\Leftrightarrow\sqrt{x}-3\inƯ\left(4\right)\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{\pm1;\pm2;\pm4\right\}\)
đến đây xét từng trường hợp rồi đối chiếu điều kiện là xong
a)Ta có:\(\sqrt{17}>\sqrt{16}\)
\(\sqrt{26}>\sqrt{25}\)
\(\implies\) \(\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}\)
\(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)
Mà \(\sqrt{100}=10\) \(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{100}\)
Mà \(\sqrt{100}>\sqrt{99}\) \(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
b)Ta có:\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=100.\frac{1}{\sqrt{100}}\)
\(\implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>\frac{1}{10}.100=10\)
\(\implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>10\left(đpcm\right)\)
Đặt p =3k+1\(\Rightarrow p^2+2012⋮3\)và lớn hơn 3 nên là hợp số
tương tự p=3k+2
a)\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)
b) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+.......+\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=10\)
Nguyễn Nam Cao
Chắc gì nó không có quy luật? Biết đâu nó có quy luật nhưng dài, chưa tính ra sao biết nó k có quy luật mà kết luận là số vô tỉ?
bài tương tự nhé
Gỉa sử căn 7 là số hữu tỉ
=> căn 7 viết dưới dạng phân số tối giản a/b ( trong đó UCLN (a,b) = 1)
=> căn 7 = a/b => 7 = a^2 / b^2 => 7b^2 = a^2
=> a^2 chia hết cho 7 => a chia hết cho 7 (1)
Đăt a = 7t thay a =7t vào a^2 = 7b^2
=> 49 t^2 = 7b^2 => b^2 = 7 t^2 => b^2 chia hết cho 7 => b chia hết cho 7 (2)
Từ (1) và (2) => a,b có một ước chung là 7 trái với gỉa sử UCLN (a,b) = 1
Vậy căn 7 là số vô tỉ