\(\sqrt{2}+a\)  ( a thuộc Z ) là số voo tỉ

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2015

2 không có dạng x2 (x thuộc Z)

\(\Leftrightarrow\sqrt{2}\) là số vô tỉ

< = > \(\sqrt{2}+a\) là số vô tỉ 

24 tháng 7 2016

can bac 2 cua 2 la 1so vo ti nen cong voi a bat ki (a thuoc Z+)thi a van la so vo ti

Ta có : \(\sqrt{2}\)là số vô tỉ

\(\sqrt{3}\)là số vô tỉ

\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm ) 

b) tương tự :

 \(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)

\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ

8 tháng 10 2019

c) \(\sqrt{2}\)là số vô tỉ nên \(1+\sqrt{2}\)là số vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\)là số vô tỉ

d) \(\sqrt{3}\)là số vô tỉ\(\Rightarrow\frac{\sqrt{3}}{n}\)là số vô tỉ

\(\Rightarrow m+\frac{\sqrt{3}}{n}\)là số vô tỉ

25 tháng 3 2019

tth thiếu cái chứng minh \(\sqrt{2}\) là số vô tỉ nên tôi chứng minh nốt.

Giả sử  \(\sqrt{2}\) là số hữu tỉ.Khi đó \(\sqrt{2}=\frac{p}{q}\) với  \(p,q\in Z^+,\left(p,q\right)=1\).

\(\Rightarrow2=\frac{p^2}{q^2}\Rightarrow p^2=2q^2\)

Do \(p⋮2\Rightarrow p^2⋮2\Rightarrow p^2⋮4\Rightarrow2q^2⋮4\Rightarrow q^2⋮2\Rightarrow q⋮2\)

Nên  \(\left(p,q\right)\ne1\)(KTMĐK)

Vậy......

25 tháng 3 2019

Giả sử \(\sqrt{2}+a\left(a\in Z^+\right)=m\) là số hữu tỉ.

Suy ra \(\sqrt{2}=m-a\) là số hữu tỉ.

Tức là \(\sqrt{2}\)là số hữu tỉ (vô lí)

Vậy \(\sqrt{2}+a\left(a\in Z^+\right)\)là số vô tỉ.

27 tháng 10 2016

Chứng minh cái này thì đơn giản thôi! 
Mình xin trình bày cách chứng minh mà mình tâm đắc nhất: 
Giả sứ căn 2 là số hữu tỉ=> căn 2 có thể viết dưới dạng m/n.(phân số m/n tối giản hay m,n nguyên tố cùng nhau) 
=>(m/n)^2=2 
=>m^2=2n^2 
=>m^2 chia hết cho 2 
=>m chia hết cho 2 
Đặt m=2k (k thuộc Z) 
=>(2k)^2=2n^2 
=>2k^2=n^2 
=> n^2 chia hết cho 2 
=> n chia hết cho 2. 
Vậy m,n cùng chia hết cho 2 nên chúng không nguyên tố cùng nhau 
=> Điều đã giả sử là sai => căn 2 là số vô tỉ.

2 tháng 7 2015

mk nghĩ thế này

a,b) Ta thấy: không có số nào mũ 2 lên được 15 và 2

=>\(\sqrt{15},\sqrt{2}\) là số vô tỉ

c) ta có: \(\sqrt{2}\) là số vô tỉ

mà Số tự nhiên - số vô tỉ luôn luôn là số vô tỉ

=>đpcm

nha bạn

  • Nếu \(k\)= 0 thì hiển nhiên  ta có : \(\frac{ak^2+bk+c}{xk^2+yk+z}=\frac{c}{z}\). Giá trị tỉ số ko phụ thuộc vào \(k\)
  • Nếu \(k\ne0\), áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{ak^2}{xk^2}=\frac{bk}{yk}=\frac{ak^2+bk+c}{xk^2+yk+z}\)

Ta thấy tỉ số luôn bằng giá trị bang đầu là: \(\frac{a}{x};\frac{b}{y};\frac{c}{z}\) . Hay ko phụ thuộc vào giá trị \(k\)

Hok tốt

23 tháng 7 2019

Ta có : \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{ak^2}{xk^2}=\frac{bk}{yk}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có  : \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{ak^2}{xk^2}=\frac{bk}{yk}=\frac{ak^2+bk+c}{xk^2+yk+z}\)

hay \(\frac{a}{b}=\frac{ak^2+bk+c}{xk^2+yk+z}\)

Vậy tỉ số \(\frac{ak^2+bk+c}{xk^2+yk+z}\) ko phụ thuộc vào giá trị của k