\(^{^2}\)+3n-38 không chia hết cho 49

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

Giả sử tồn tại n sao cho \(S=n^2 + 3n - 38\) chia chết cho \(49\).

Khi đó xét biểu thức:

\(n^2 - 4n + 4 = n^2 + 3n - 7n -38 + 42 \)

\(= n^2 + 3n - 38 - 7(n - 6)\) chia hết cho \(7\)

Biểu thức đem xét là \(n^2 - 4n + 4\) viết \(-4n \)

\(= -7n + 3n; 4 \)

\(= -38 + 42\)

\(\Rightarrow\)\( n^2 - 4n + 4 \)

\(= (n - 2)^2\) chia hết cho \(7\) hay \(n-2\) chia hết cho \( 7\)

Gọi \(n - 2 = 7t \)

\(\Rightarrow\)\( n = 2 + 7t\). Thay vào \(S\) ta có:

\(S = (2 + 7t)^2 + 3(2 + 7t) - 38 \)

\(= 4 + 28t + 49t^2 + 6 + 21t - 38 \)

\(= 49t^2 + 49t - 28 \)

\(\Rightarrow S\) không chia hết cho \(49\)

\(\RightarrowĐpcm\)

6 tháng 7 2016

C1: Đặt tính chia ra:

\(\left(n^3-3n^2-1\right):\left(n^2+n+1\right)\)

C2: Dùng quy nạp

Giả sử n=k, chứng minh đúng với k+1

22 tháng 9 2016

\(A=\left(2n\right)^3+\left(3n^2\right)+n\)

\(A=n\left(2n^2+3n+1\right)\)

\(A=n\left[\left(n^2+2n+1\right)+\left(n^2+n\right)\right]\)

\(A=n\left[\left(n+1\right)^2+n\left(n+1\right)\right]\)

\(A=n\left(n+1\right)\left(2n+1\right)\)

Ta có : A luôn chia hết cho 2 vì n ( n + 1) chia hết cho 2
Khi n = 3k suy ra n chia hết cho 3 
Suy ra A chia hết cho 3
Khi n = 3k + 1 
Khi đó :2n + 1 = 6k + 2 + 1 = 6k + 3 = 3(2k + 1) chia hết cho 3 
Khi n = 3k + 2
Khi đó n + 1 = 3k + 3 = 3(k + 1) chia hết cho 3
Suy ra: A chia hết cho 2 và A chia hết cho 3
Vậy A chia hết cho 6

13 tháng 2 2020

\(n^2-3n+25=n^2+2n-5n-10+35\)

\(=n\left(n+2\right)-5\left(n+2\right)+35=\left(n+2\right)\left(n-5\right)+35\)

\(\left(n+2\right)-\left(n-5\right)=7⋮7\)

=> \(n+2\)\(n-5\) có cùng số dư khi chia 7

+ TH1: \(\left\{{}\begin{matrix}n+2⋮7\\n-5⋮7\end{matrix}\right.\) \(\Rightarrow\left(n+2\right)\left(n-5\right)⋮49\Rightarrow\left(n+2\right)\left(n-5\right)+35⋮̸̸49\)

hay \(n^2-3n+25⋮̸49\)

+ TH2 : \(\left\{{}\begin{matrix}n+2⋮̸7\\n-5⋮̸7\end{matrix}\right.\) \(\Rightarrow\left(n+2\right)\left(n-5\right)⋮̸7\)

\(\Rightarrow\left(n+2\right)\left(n-5\right)+35⋮̸7\) \(\Rightarrow\left(n+2\right)\left(n-5\right)+35⋮̸49\)

Vậy trong mọi TH ta đề có \(n^2-3n+25⋮̸49\) \(\forall n\in Z\)

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

Lời giải:
Phản chứng. Giả sử $n^2-3n+25$ chia hết cho $49$

$\Rightarrow n^2-3n+25\vdots 7$

$\Rightarrow n^2-3n+7n+25-21\vdots 7$

$\Rightarrow n^2+4n+4\vdots 7$

$\Rightarrow (n+2)^2\vdots 7\Rightarrow n+2\vdots 7$

Đặt $n+2=7k$ với $k$ nguyên.

$\Rightarrow n^2-3n+25=49k^2-49k+35$ không chia hết cho $49$ (vô lý)

Vậy điều giả sử là sai. Tức là $n^2-3n+25$ không chia hết cho $49$

15 tháng 1 2019

Ta có: n3-n=n(n2-1)=n.(n-1).(n+1)

Vì đây là tích ba số tự nhiên liên tiếp nên nó chia hết cho 2 và 3 \(\Rightarrow\)n3-n sẽ chia hết cho 6

\(\Rightarrow\)n3-n+2 chia 6 dư 2

Vậy n3-n+2 không chia hết cho 6 với mọi số tự nhiên n