K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2015

x2+x=y2+2y=>x2+x+1=(y+1)2
=>x2+x+1 là chính phương
Mà x2<x2+x+1<(x+1)2
=> pt vô nghiệm
Đây chỉ là mình viết vắn tắt thôi, bạn tự thêm vào cho đầy đủ nhé

25 tháng 11 2015

ọe ... cho tui xin đi .....

20 tháng 8 2017

1/ y2(x - y) + z2(x - z) 

= y2x - y3 + z2x - z3

= x(y2 + z2) - y3 - z3

= x3 - y3 - z3

25 tháng 2 2018

voi x,y,z>0 ta co

ap dung bdt co si ta co

\(T>=3\sqrt[3]{\sqrt{\left(\frac{x^2+1}{x^2}+\frac{1}{y^2}\right)\left(\frac{y^2+1}{y^2}+\frac{1}{z^2}\right)\left(\frac{z^2+1}{z^2}+\frac{1}{x^2}\right)}}\)

=\(3\sqrt[3]{\sqrt{\left(1+\frac{1}{x^2}+\frac{1}{y^2}\right)\left(1+\frac{1}{y^2}+\frac{1}{z^2}\right)\left(1+\frac{1}{z^2}+\frac{1}{x^2}\right)}}\)

>=\(3\sqrt[3]{\sqrt{3\sqrt[3]{\frac{1}{x^2y^2}}.3\sqrt[3]{\frac{1}{y^2z^2}}.3\sqrt[3]{\frac{1}{x^2z^2}}}}=3\sqrt[3]{\sqrt{27\sqrt[3]{\frac{1}{\left(xyz\right)^4}}}}\)

=\(3\sqrt[3]{\sqrt{27.\frac{1}{xyz}.\sqrt[3]{\frac{1}{xyz}}}}=3\sqrt{3}.\sqrt[9]{\frac{1}{\left(xyz\right)^2}}\)

ap dung bdt co si ta co 

\(x+y+z>=3\sqrt[3]{xyz}\)

<=>3>=\(3\sqrt[3]{xyz}\left(dox+y+z=3\right)\)

<=>xyz<=1

<=>1/xyz>=1

<=>\(\sqrt[9]{\frac{1}{\left(xyz\right)^2}}>=1\)

do do T>=\(3\sqrt{3}\)

dau = xay ra <=>x=y=z=1

25 tháng 2 2018
phai cam on day