\(\dfrac{2n+1}{2n\left(n+1\right)}\)luôn luôn tối giản với mọi n
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2018
https://i.imgur.com/TTokWla.jpg
14 tháng 2 2018

Goi d la UCLN(2n+1,2n(n+1)) nen tao co:

\(\left\{{}\begin{matrix}2n+1⋮d\\2n\left(n+1\right)⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}2n+1⋮d\\n\left(2n+1\right)+n⋮d\end{matrix}\right.\)

=> n⋮d

=> 1.n⋮d => 1⋮d

=> dpcm

Ai kết bạn vs mình ko mình hết lượt rồi

15 tháng 12 2017

\(\dfrac{2n+1}{2n\left(n+1\right)}=\dfrac{2n+1}{2n^2+2n}\)

Gọi \(d=ƯCLN\left(2n+1;2n^2+2n\right)\left(d\in N\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n^2+2n⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n^2+n⋮d\\2n+1⋮d\end{matrix}\right.\)

\(\Leftrightarrow n⋮d\)

\(2n+1⋮d\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n⋮d\\2n+1⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(2n+1;2n\left(n+1\right)\right)=1\)

\(\Leftrightarrow\) Phân số \(\dfrac{2n+1}{2n\left(n+1\right)}\) là phân số tối giản

15 tháng 5 2023

Xét12�+1=12�+24−23=12(�+2)−2312n+1=12n+2423=12(n+2)23

⇒12�+12�(�+2)=12(�+2)−232�(�+2)=12(�+2)2�(�+2)−232�(�+2)=6�−232�(�+2)2n(n+2)12n+1=2n(n+2)12(n+2)23=2n(n+2)12(n+2)2n(n+2)23=n62n(n+2)23

Xét232�(�+2)2n(n+2)23ta có:

2�(�+2)⋮22n(n+2)2

=> 2�(�+2)2n(n+2)là số chẵn

mà 23 là số lẻ

⇒232�(�+2)2n(n+2)23Tối giản

⇒6�−232�(�+2)n62n(n+2)23tối giản

Vậy 12�+12�(�+2)2n(n+2)12n+1Tối giản (ĐPCM)

27 tháng 5 2017

Giả sử phân số trên chưa tối giản

=> Tồn tại một số nguyên tố d để : \(5n+2⋮d\)\(\left(3n+1\right)\left(2n+1\right)⋮d\)

+) \(\left(3n+1\right)\left(2n+1\right)⋮d\)

Mà : d nguyên tố

=> \(3n+1⋮d\) hay \(2n+1⋮d\)

+) Nếu : \(3n+1⋮d\)

\(5\in N\Rightarrow5\left(3n+1\right)⋮d\Rightarrow15n+5⋮d\)

\(5n+2⋮d\) ; \(3\in N\Rightarrow3\left(5n+2\right)⋮d\Rightarrow15n+6⋮d\)

\(\Rightarrow\left(15n+6\right)-\left(15n+5\right)⋮d\)

\(\Rightarrow15n+6-15n-5⋮d\Rightarrow1⋮d\)

d là ước của 1 \(\Rightarrow d\in\left\{-1;1\right\}\) ( Vô lý vì d nguyên tố )

=> loại

+) Nếu \(2n+1⋮d\)

\(5\in N\Rightarrow5\left(2n+1\right)⋮d\Rightarrow10n+5⋮d\)

\(5n+2⋮d;2\in N\Rightarrow2\left(5n+2\right)⋮d\Rightarrow10n+4⋮d\)

\(\Rightarrow\left(10n+5\right)-\left(10n+4\right)⋮d\)

\(\Rightarrow10n+5-10n-4⋮d\Rightarrow1⋮d\)

d là ước của 1 \(\Rightarrow d\in\left\{-1;1\right\}\) ( Vô lý vì d nguyên tố )

=> loại => Giả sử sai

27 tháng 5 2017

Để cm phân số bất kì tối giản thì chúng ta hãy cm rằng tử và mẫu cua chúng có UCLN là \(\pm\)1 .

Gọi d là UC( 5n+2;(3n+1)(2n+1)).

\(5n+2⋮d\)\(\left(3n+1\right)\left(2n+1\right)⋮d\)

mà d là snt nên \(3n+1⋮d\) hoặc \(2n+1⋮d\)

\(\Leftrightarrow\)\(3\left(5n+2\right)⋮d\)\(5\left(3n+1\right)⋮d\)

\(\Leftrightarrow\)\(15n+6⋮d\)\(15n+5⋮d\)

\(\Leftrightarrow15n+6-\left(15n+5\right)⋮d\)

\(\Leftrightarrow d\in U\left(1\right)\)\(=\left\{\pm1\right\}\)

Vậy phân số đã cho tối giản.

Chúc bạn học tốt !!!

29 tháng 5 2017

Ta có: \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}=\frac{5n+2}{6n^2+5n+1}\)

Giả sử d là ước chung lớn nhất của \(\left(5n+2\right);\left(6n^2+5n+1\right)\)

\(\Rightarrow\hept{\begin{cases}6.\left(5n+2\right)^2⋮d\\25.\left(6n^2+5n+1\right)⋮d\end{cases}}\)

\(\Rightarrow25\left(6n^2+5n+1\right)-6\left(5n+2\right)^2⋮d\)

\(\Rightarrow5n+1⋮d\)

\(\Rightarrow\left(5n+2\right)-\left(5n+1\right)=1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}\)là phân số tối giản

9 tháng 6 2017

Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N