Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^n-n-\left(n^2-2n+1\right)=\left(n^2-n\right)\left(n^{n-2}+n^{n-3}+...+n+1\right)-\left(n-1\right)^2=\left(n-1\right)n\left(n^{n-2}+n^{n-3}+...+n+1\right)-\left(n-1\right)^2\)
\(\left(n-1\right)\left[\left(n^{n-1}-1\right)+\left(n^{n-2}-1\right)+...+\left(n-1\right)\right]-\left(n-1\right)^2\)
=> luôn chia hết cho (n-1)^2
\(\frac{A}{n}=\frac{4n+4}{n}=4+\frac{4}{n}\)
\(\Rightarrow n\in U\left(4\right)\)
Lập bảng tiếp nhé!
\(\frac{B}{n}=\frac{5n+6}{n}=5+\frac{6}{n}\)
Lập bảng
\(2.\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}=\frac{3}{29}\cdot\frac{29}{3}-\frac{1}{5}\cdot\frac{29}{3}=1-\left(1+\frac{14}{15}\right)=1-1-\frac{14}{15}=\frac{14}{15}\)
b)\(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}=\frac{5}{9}\cdot\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
a) \(n^2-3n+9\)chia het cho \(n-2\)
\(\Leftrightarrow\)\(n^2-2n-n-2+11\)chia het cho \(n-2\)
\(\Leftrightarrow\)\(\left(n-2\right)\left(n+1\right)+11\)chia het cho \(n-2\)
\(\Leftrightarrow\)11 chia het cho \(n-2\)
\(\Rightarrow\)\(n-2\in U\left(11\right)\)\(\Rightarrow\)\(n-2\in\left\{-11;-1;1;11\right\}\)
\(\Rightarrow\)\(n\in\left\{-9;1;3;13\right\}\)
b) 2n-1 chia hết cho n-2
\(\Rightarrow2n-2+3\) chia hết cho\(n-2\)
\(\Rightarrow3\)chia hết cho \(n-2\)
\(\Rightarrow n-2\in U\left(3\right)\)\(\Rightarrow n-2\in\left\{-3;-1;1;3\right\}\)\(\Rightarrow n\in\left\{-1;1;3;5\right\}\)
Câu 1: ta có:
\(4C=4^2+4^3+...+4^n+4^{n+1}\)lấy 4C-C ta có:\(3C=4^{n+1}-4\)
=> C=\(\frac{4^{n+1}-4}{3}\)
b, tương tự ta có: \(5D=5+5^2+...+5^{2000}+5^{2001}\)
=> D=\(\frac{5^{2001}-1}{4}\)
Câu 2: ta có: \(2A=2+2^2+2^3+...+2^{200}+2^{201}\)
=> Lấy 2A - A, ta có: \(A=2^{201}-1\)=> A+1=2201 -1+1=2201 .
Vậy \(A+1=2^{201}\)
Câu 3: Ta có: \(3B=3^2+3^3+3^4+...+3^{2005}+3^{2006}\)
=> \(B=\frac{3^{2006}-3}{2}\)=> \(2B+3=3^{2006}-3+3=3^{2006}\)
Vậy 2B + 3 là một lũy thừa của 3...
Câu 4: Do 4=22nên ta có: \(2C=2^3+2^3+2^4+...+2^{2005}+2^{2006}\)
=> \(C=2^{2006}+2^3-\left(2^2+4\right)\)=>\(C=2^{2006}\)
Vậy C là lũy thừa của 2 có số mũ là 2006
Câu 5: a, Do 3n+2 chia hết cho n-1 hay:
3n-3+5 sẽ chia hết cho n-1 =>3(n-1) +5 chia hết cho n-1...mà 3(n-1) chia hết cho n-1 nên 5 chia hết n-1;
=> n-1 thuộc (1,5,-1,-5);;; nên n tương ứng với(2;6;0;-4)
b ,Do n+6 chia hết cho n nên 6 chia hết cho n hay n là ước của 6
nên => n thuộc (1,6,-1,-6);
c, Do 3n+4 chia hết cho n-1 hay: 3n-3+7 chia hết cho n-1
=> 3(n-1)+7 chia hết cho n-1 => 7 chia hết cho n-1;
n -1 thuộc (1,7,-1,-7) hay n sẽ tương ứng với( 2,8,0,-6);
d, Do n+5 chia hết cho n+1 hay n+1+4 chia hết cho n+1
=> 4 chia hết cho n+1 => n+1 thuộc (1,4,-1,-4) nên n tương ứng với (0,3,-2,-5);
Ta có
\(\frac{2n+1}{n-5}=\frac{2\left(n-5\right)+11}{n-5}=2+\frac{11}{n-5}\)
Để 2n+1 chia hết cho n-5 thì 11 phải chia hết cho n-5
Hay n-5 thuộc Ư(11)
n-5 | 1 | 5 | -1 | -5 |
n | 6 | 10 | 4 | 0 |
2
Ta có
\(\frac{n^2+3n-13}{n+3}=\frac{n\left(n+3\right)-13}{n+3}=n-\frac{13}{n+3}\)
Để n^2+3n-13 chia hết cho n+3 thì 13 phải chia hết cho n+3
=>n+3 thuộc Ư(13)
Đến đây tự tìm ra n nha Khuất Tuấn Anh
3
Ta có
\(\frac{n^2+3}{n+1}=\frac{\left(n^2-1\right)+4}{n+1}=\frac{\left(n-1\right)\left(n+1\right)+4}{n+1}=n-1+\frac{4}{n+1}\)
Lập luận như trên =>n+1 thuộc Ư(4)
Tick nha Khuất Tuấn Anh
a) Do n, n + 1 là hai số tự nhiên liên tiếp nên tích này chia hết cho 2.
Nếu \(n⋮3\Rightarrow\) tích trên chia hết cho 3. Do (2;3) = 1 nên tích trên chia hết cho 6.
Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 hay 2n + 1 chia hết cho 3. Vậy tích trên chia hết cho 3. Do đó nó cũng chia hết cho 6.
Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3. Vậy tích trên chia hết cho 3. Do đó nó cũng chia hết cho 6.
Tóm lại với mọi số tự nhiên n thì \(n\left(n+1\right)\left(2n+1\right)⋮6\)
b. Ta đặt \(A=n^5-5n^3+4n=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n-2\right)\)
Đây là tích 5 số tự nhiên liên tiếp nên chia hết cho 3 và 5.
Trong 5 số tự nhiên liên tiếp thì luôn có hai số chẵn liên tiếp. Tích hai số này lại chia hết cho 8, suy ra A chia hết cho 8.
Lại thấy (3; 5; ;8) = 1 nê A chia hết cho 3.5.8 = 120.
c) \(B=n^4+6n^3+11n^2+6n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
B là tích bốn số tự nhiên liên tiếp nên chia hết 3.
Trong 4 số tự nhiên liên tiếp thì luôn có hai số chẵn liên tiếp. Tích hai số này lại chia hết cho 8, suy ra B chia hết cho 8.
Mà (3;8) = 1 nên B chia hết 3.8 = 24.
\(A=n^n+5n^2-11n+5=n^n-n+5\left(n-1\right)^2\)
\(\text{Do }5\left(n-1\right)^2\text{ chia hết cho }\left(n-1\right)^2\text{ nên ta cần chứng minh }n^n-n\text{ chia hết cho }\left(n-1\right)^2\)
\(\text{Hay }\left(n+1\right)^{n+1}-\left(n+1\right)\text{ chia hết cho }n^2\left(n\ge1\right)\)
\(B=\left(n+1\right)^{n+1}-\left(n+1\right)=\left(n+1\right).\left(n+1\right)^n-\left(n+1\right)=\left(n+1\right)\left[\left(n+1\right)^n-1\right]\)
\(=\left(n+1\right)\left(n+1-1\right)\left[\left(n+1\right)^{n-1}+\left(n+1\right)^{n-2}+...+\left(n+1\right)^1+1\right]\)
\(=\left(n+1\right).n.\left[\left(n+1\right)^{n-1}+\left(n+1\right)^{n-2}+...+\left(n+1\right)+1\right]\)
\(\text{Để chứng minh }B\text{ chia hết cho }n^2\text{ thì ta chứng minh }\left[\left(n+1\right)^{n-1}+...+1\right]\text{ chia hết cho }n\)
\(\left(n+1\right)^{n-1}+...+1=\left(n+1\right)^{n-1}+...+\left(n+1\right)^0\text{ có }n\text{ số hạng}\)
\(\text{Ta thấy: }\left(n+1\right)^k=a_k.n^k+a_{k-1}.n^{k-1}+...+a_1.n^1+1\text{ với mọi số tự nhiên }k\)
\(\Rightarrow\left(n+1\right)^k\text{ chia }\left(n-1\right)\text{ luôn dư 1.}\)
\(\Rightarrow\left(n+1\right)^{n-1};\left(n+1\right)^{n-2};....\left(n+1\right)^1;\left(n+1\right)^0\text{ (n số) chia n đều dư 1.}\)
\(\Rightarrow\left(n+1\right)^{n-1}+...+\left(n+1\right)+1\text{ chia hết cho }n\)
\(\Rightarrow B=\left(n+1\right)n\left[\left(n+1\right)^{n-1}+...+1\right]\text{ chia hết cho }n^2\)
\(\Rightarrow\left(n+1\right)^{n+1}-\left(n+1\right)\text{ chia hết cho }n^2\text{ với mọi }n\ge1\)
\(n^2-n\text{ chia hết cho }\left(n-1\right)^2\text{ với mọi }n\in N;\text{ }n\ge2\)
\(\text{ }\)\(\Rightarrow n^2-n+5\left(n-1\right)^2\text{ chia hết cho }\left(n-1\right)^2\text{ với }n\in N;n\ge2\text{ (đpcm)}\)