Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :
\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)
Dấu "=" xảy ra <=> \(x=y=z=1\)
Vậy ............
Ta có: \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy\left(x+y\right)+3xyz\right]\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-\left[3xy\left(x+y+z\right)\right]\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-zy+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-zy+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)(đpcm)
Có : (a-b)^2>=0
<=> a^2+b^2-2ab >=0
<=>a^2+b^2 >= 2ab
<=>a^2+b^2+2ab >= 4ab
<=> (a+b)^2 >= 4ab
Với a,b >0 thì chia cả 2 vế cho (a+b).ab thì :
a+b/ab >= 4/a+b
<=>4/a+b <= 1/a+1/b
<=> 1/a+b <= 1/4.(1/a+1/b) ( với mọi a,b > 0 )
Áp dụng bđt trên cho x;y;z > 0 thì : x/2x+y+z = x. 1/(x+y)+(z+x) <= x/4 .( 1/x+y+1/x+z) = x/4.(x+y) + x/4.(x+z)
Tương tự : y/x+2y+z <= y/4.(y+x) + y/4.(y+z)
z/x+y+2z <= z/4.(z+x) + z/4.(z+y)
=> VT <= [ x/4.(x+y) + y/4.(y+x) ] + [ y/4.(y+z) + z/4.(z+y) ] + [ z/4.(z+x) + x/4.(x+z) ] = 1/4 + 1/4 + 1/4 = 3/4
=> ĐPCM
Dấu "=" xảy ra <=> x=y=z > 0
k mk nha
áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với mọi a,b >0
Thì \(\frac{x}{x+y}+\frac{x}{x+z}\ge\frac{4x}{2x+y+z}\)
Tương tự thì đpcm
Cách này nhanh này thành đơ
Xét vế 1 ta có: \(\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{x}{y}\) \(=\frac{yz+yx}{xz}+\frac{z+x}{y}\)
\(=\frac{y^2z+y^2x+x^2z+xz^2}{xyz}\)nhóm hạng tử 1 với 4,2 với 3 trên tử ta được:
\(=\frac{z\left(y^2+xz\right)+x\left(y^2+xz\right)}{xyz}\)\(=\frac{\left(z+x\right)\left(y^2+xz\right)}{xyz}=\frac{z+x}{zx}\times\frac{y^2+xz}{y}\)(1);
Xét vế 2 ta có: \(=1+\frac{x}{z}+\frac{z}{x}+1=2+\frac{x}{z}+\frac{z}{x}\)nhân 2 đa thức với nhau:
\(=\frac{2xz}{xz}+\frac{x^2+z^2}{xz}\)\(=\frac{x^2+2xz+z^2}{xz}\)\(=\frac{\left(x+z\right)^2}{xz}=\frac{z+x}{xz}\times\frac{z+x}{1}\)(2)
Từ (1) và (2),ta có: vế 1 = vế 1; mà\(\frac{y^2+xz}{y}< y+\frac{xz}{y}< x+z\)
Suy ra điều phải chứng minh...
\(\frac{x}{1+y-x}+\frac{y}{1+z-y}+\frac{z}{1+x-z}\)
\(=\frac{x}{2y+z}+\frac{y}{2z+x}+\frac{z}{2x+y}=\frac{x^2}{2xy+xz}+\frac{y^2}{2yz+xy}+\frac{z^2}{2xz+y^2}\ge\frac{\left(x+y+z\right)^2}{3\left(xy+yz+xz\right)}\)(Schwarz)
Giờ ta cần CM\(\frac{\left(x+y+z\right)^2}{3\left(xy+yz+xz\right)}\ge1\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
Lại có:
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)\ge3\left(xy+yz+xz\right)\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
Vậy BĐT đã được CM. Dấu"="xảy ra khi x=y=z=1/3
Cho x,y,z>0; \(x^2+y^2+z^3=\frac{5}{3}\)
CMR: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}\le\frac{1}{xyz}\)
Vì x2 + y2 =1 \(\Rightarrow\)\(\hept{\begin{cases}x^2< =1\\y^2< =1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< =1\\y< =1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x^3< =x^2\\y^3< =y^2\end{cases}}\)(vì x,y>=0)
\(\Rightarrow x^3+y^3< =x^2+y^2=1\) (1)
Áp dụng BDT Cô-si 3 số , ta có :
\(x^3+x^3+\frac{1}{2\sqrt{2}}>=3\sqrt[3]{x^3.x^3.\frac{1}{2\sqrt{2}}}=\frac{3x^2}{\sqrt{2}}\)
\(y^3+y^3+\frac{1}{2\sqrt{2}}>=3\sqrt[3]{y^3.y^3.\frac{1}{2\sqrt{2}}}=\frac{3y^2}{\sqrt{2}}\)
Cộng 2 vế , ta có :
\(2\left(x^3+y^3\right)+\frac{2}{2\sqrt{2}}>=\left(x^2+y^2\right)\frac{3}{\sqrt{2}}\)
\(\Rightarrow2\left(x^3+y^3\right)+\frac{1}{\sqrt{2}}>=\frac{3}{\sqrt{2}}\) ( Vì \(x^2+y^2=1\))
\(\Rightarrow2\left(x^3+y^3\right)>=\frac{2}{\sqrt{2}}\)
\(\Rightarrow x^3+y^3>=\frac{1}{\sqrt{2}}\) (2)
Từ (1) và (2) => Điều cần chứng minh .
Áp dụng BĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) ta có:
\(\left(\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\right)^2\ge3\left(x^2+y^2+z^2\right)=9\)
\(\Rightarrow\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\ge9\)
Đẳng thức xảy ra khi \(x=y=z=1\)
ko pic nũa mik mới lúp 4 mí
k mik ik bn tốt