Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\frac{1}{2x+y+z}=\frac{1}{x+y+x+z}\\\frac{1}{2z+y+x}=\frac{1}{z+y+x+z}\\\frac{1}{2y+x+z}=\frac{1}{x+y+y+z}\end{cases}}\)
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\hept{\begin{cases}\frac{1}{x+y+x+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\\\frac{1}{z+y+x+z}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\\\frac{1}{x+y+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\end{cases}}\)
\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{2y+z+x}+\frac{1}{2z+x+y}\le\frac{1}{2}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
\(\hept{\begin{cases}\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\\\frac{1}{x+z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{z}\right)\\\frac{1}{z+y}\le\frac{1}{4}\left(\frac{1}{z}+\frac{1}{y}\right)\end{cases}}\Rightarrow\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{2z+x+y}+\frac{1}{2y+z+x}\le\frac{1}{2}\cdot\frac{1}{2}\cdot4=1\)
\("="\Leftrightarrow x=y=z=0,75\)
Với 2 số dương bất kì: ( 1 )
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)Vì x và y dương nên \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\forall x;y\)
Áp dụng ( 1 ): \(\frac{4}{2x+y+z}=\frac{4}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{x+y}+\frac{1}{x+z}\)
Mà: \(\frac{1}{x+y}+\frac{1}{x+z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)=\frac{1}{4}\)\(=\frac{1}{4}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Nên: \(\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Tương tự ta có: \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)
Và \(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Cộng vế với vế các bất đẳng thức kết hợp với điều kiện \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\) nên ta có đpcm
\(ĐK:x,y,z>\frac{1}{2}\)
Ta có: \(\left(x+2y\right)^2=\left(\frac{3y}{2}+\frac{y+2x}{2}\right)^2\ge4.\frac{3y}{2}.\frac{y+2x}{2}=3y\left(2x+y\right)\)\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{x+2y}{3xy}=\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)
Tương tự: \(\frac{2y+z}{y\left(y+2z\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\); \(\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\)
Cộng theo vế ba bất đẳng thức trên, ta được: \(VT\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)
Đẳng thức xảy ra khi x = y = z = 1
Ta có bđt \(\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)\)
\(\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)\)
Áp dụng nhiều lần bđt trên ta được
\(\(\frac{1}{3x+3y+2z}=\frac{1}{\left(2x+y+z\right)+\left(x+2y+z\right)}\le\frac{1}{4}\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}\right)\)\)
\(\(\le\frac{1}{4}\left(\frac{1}{\left(x+y\right)+\left(x+z\right)}+\frac{1}{\left(x+y\right)+\left(y+z\right)}\right)\)\)
\(\(\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\right)\right]\)\)
\(\(\le\frac{1}{16}\left(\frac{2}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\right)\)\)
C/m tương tự cho các bđt còn lại
\(\(\frac{1}{3x+2y+3z}\le\frac{1}{16}\left(\frac{2}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\right)\)\)
\(\(\frac{1}{2x+3y+3z}\le\frac{1}{16}\left(\frac{2}{y+z}+\frac{1}{x+y}+\frac{1}{x+z}\right)\)\)
Cộng vế theo vế được
\(\(P\le\frac{1}{16}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)=\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{1}{4}.6=\frac{3}{2}\)\)
Dấu "=" xảy ra
\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\\frac{1}{2x}+\frac{1}{2x}+\frac{1}{2x=6}\end{cases}}\)\)
\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\\frac{3}{2x}=6\end{cases}}\)\)
\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x=\frac{1}{4}\end{cases}}\)\)
\(\(\Leftrightarrow x=y=z=\frac{1}{4}\)\)
Vậy ..........
cách khác :))
\(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\)\(\Leftrightarrow\)\(x+y+z\le3\)
\(P=\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\)
\(P=\frac{1}{3\left(x+y+z\right)-z}+\frac{1}{3\left(x+y+z\right)-y}+\frac{1}{3\left(x+y+z\right)-x}\)
\(\ge\frac{9}{9\left(x+y+z\right)-\left(x+y+z\right)}=\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.3}=\frac{3}{8}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)
áp dụng bđt 1/a +1/b >= 4/(a+b) ta đc :....1/ (2x+y+z) <= 1/4(x+y)+1/4(x+z) ; 1/(2y+z+x)<=1/4(y+z)+1/4(x+y) ; 1/(2z+x+y)<=1/4(z+x)+1/4(z+y)
suy ra A (biểu thức đã cho ) <= 1/2(x+y) +1/2(y+z) +1/2(z+x)<= 1/8 . (1/x+1/y) +1/8. (1/y+1/z)+1/8(1/z+1/x) =1/8 . 2. (1/x+1/y+1/z)=1 (áp dụng lại bđt trên)...,suyra đpcm.
dấu ''='' xảy ra <=> x=y=z
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Tương tự rồi cộng từng vế, ta có:
\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{4}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)
=> ĐPCM