\(x+y+z\ne0\) thì 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

Làm biếng chép :'<

Link : Câu hỏi jj đó vào đây rồi biết :)) 

17 tháng 8 2017
dài quá, ko chép đâu
27 tháng 6 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{a+b+c}{x+y+z}=k\)

\(\Rightarrow\hept{\begin{cases}a=kx;b=ky;c=kz\Rightarrow a^2=k^2x^2;b^2=k^2y^2;c^2=k^2z^2\\a+b+c=k\left(x+y+z\right)\end{cases}}\)

Có: \(\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\frac{x^2+y^2+z^2}{\left(kx^2+ky^2+kz^2\right)^2}=\frac{x^2+y^2+z^2}{k^2\left(x^2+y^2+z^2\right)^2}=\frac{1}{k^2\left(x^2+y^2+z^2\right)}\)

\(=\frac{1}{k^2x^2+k^2y^2+k^2z^2}=\frac{1}{a^2+b^2+c^2}\)(đpcm)

26 tháng 11 2016

\(\hept{\begin{cases}x=by+cz\left(1\right)\\y=ax+cz\left(2\right)\\z=ax+by\left(3\right)\end{cases}}\)

Cộng theo vế 3 đẳng thức trên:

\(x+y+z=2ax+2by+2cz=2\left(ax+by\right)+2cz=2z+2cz=2z\left(c+1\right)\)

\(=>\frac{1}{c+1}=\frac{2z}{x+y+z}\left(4\right)\)

Tương tự,ta có \(\frac{1}{a+1}=\frac{2x}{x+y+z}\left(5\right);\frac{1}{b+1}=\frac{2y}{x+y+z}\left(6\right)\)

cộng theo vế (4),(5),(6) ta đc:

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\) (đpcm)

25 tháng 11 2016

http://olm.vn/hoi-dap/question/580063.html   (Câu hỏi của Anh Cao Ngọc)

5 tháng 9 2016

Ta có : \(\begin{cases}x=by+cz\\y=ax+cz\\z=ax+by\end{cases}\) . Cộng các đẳng thức trên theo vế :

\(x+y+z=2\left(ax+by+cz\right)\Rightarrow\frac{x+y+z}{ax+by+cz}=2\)

Lại có : \(y=ax+cz\Rightarrow a=\frac{y-cz}{x}\Rightarrow a+1=\frac{x+y-cz}{x}\Rightarrow\frac{1}{a+1}=\frac{x}{x+y-cz}=\frac{x}{ax+by+cz}\)

Tương tự : \(\frac{1}{b+1}=\frac{y}{ax+by+cz};\frac{1}{c+1}=\frac{z}{ax+by+cz}\)

\(\Rightarrow P=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{x}{ax+by+cz}+\frac{y}{ax+by+cz}+\frac{z}{ax+by+cz}\)

\(=\frac{x+y+z}{ax+by+cz}=2\)

5 tháng 9 2016

Ta có : \(\begin{cases}x=by+cz\\y=ax+cz\\z=ax+by\end{cases}\) . Cộng các đẳng thức trên theo vế : 

\(x+y+z=2\left(ax+by+cz\right)\)\(\Rightarrow\frac{x+y+z}{ax+by+cz}=2\)

Ta có : \(y=ax+cz\Rightarrow a=\frac{y-cz}{x}\Rightarrow a+1=\frac{x+y-cz}{x}\Rightarrow\frac{1}{a+1}=\frac{x}{x+y-cz}\)

\(\Rightarrow\frac{1}{a+1}=\frac{x}{ax+by+cz}\)

\(\Rightarrow P=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{x+y+z}{ax+by+cz}=2\)

Tương tự : \(\frac{1}{b+1}=\frac{y}{ax+by+cz}\) ; \(\frac{1}{c+1}=\frac{z}{ax+by+cz}\)

 

 

18 tháng 6 2017

x=by+cz,y=ax+cz,z=ax+by

=>x+y+z=2(ax+by+cz) (1)

Thay z=ax+by vào (1) ta có :

x+y+z=2(z+cz)=2z(c+1)

\(=>\frac{1}{c+1}=\frac{2z}{x+y+z}\)

Tương tự ta có : \(\frac{1}{a+1}=\frac{2x}{x+y+z},\frac{1}{b+1}=\frac{2y}{x+y+z}\)

=>Q=\(\frac{2\left(x+y+z\right)}{x+y+z}=2\)

14 tháng 11 2018

Ta có : \(y+z=ax+cz+ax+by=2ax+x\)

\(\Rightarrow\)\(y+z-x=2ax\)\(\Rightarrow\)\(a=\frac{y+z-x}{2x}\)\(\Rightarrow\)\(\frac{1}{a+1}=\frac{2x}{x+y+z}\)

Tương tự, ta cũng có \(\frac{1}{b+1}=\frac{2y}{x+y+z};\frac{1}{c+1}=\frac{2z}{x+y+z}\)

\(\Rightarrow\)\(S=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Chúc bạn học tốt ~ 

28 tháng 1 2017

Ta có x + y = 2cz + ax + by = 2cz + z

hay 2cz = x + y - z, suy ra c = \(\frac{x+y-z}{2z}\)

do đó: \(1+c=\frac{x+y+z}{2z}\) hay \(\frac{1}{1+c}=\frac{2z}{z+y+z}\)

Tương tự \(1+a=\frac{x+y+z}{2x}\) hay \(\frac{1}{1+a}=\frac{2x}{x+y+z}\)

\(1+b=\frac{x+y+z}{2y}\) hay \(\frac{1}{1+b}=\frac{2y}{x+y+z}\)

Vậy \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

28 tháng 1 2017

Ta có \(\left\{\begin{matrix}x=by+cz\\y=ax+cz\\z=ax+by\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}ax+x=ax+by+cz\\by+y=ax+by+cz\\cz+z=ax+by+cz\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}x\left(a+1\right)=ax+by+cz\\y\left(b+1\right)=ax+by+cz\\z\left(c+1\right)=ax+by+cz\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}a+1=\frac{ax+by+cz}{x}\\b+1=\frac{ax+by+cz}{y}\\c+1=\frac{ax+by+cz}{z}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{1}{a+1}=\frac{x}{ax+by+cz}\\\frac{1}{b+1}=\frac{y}{ax+by+cz}\\\frac{1}{c+1}=\frac{z}{ax+by+cz}\end{matrix}\right.\)

\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{x+y+z}{ax+by+cz}\)

Ta lại có \(\left\{\begin{matrix}x=by+cz\\y=ax+cz\\z=ax+by\end{matrix}\right.\)

\(\Rightarrow x+y+z=2\left(ax+by+cz\right)\)

\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{x+y+z}{ax+by+cz}=\frac{2\left(ax+by+cz\right)}{ax+by+cz}=2\)

Vậy \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\left(đpcm\right)\)

2 tháng 11 2018

\(\frac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\Leftrightarrow\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)

tiếp theo làm theo Câu hỏi của Vương Nguyễn Thanh Triều - Toán lớp 8 - Học toán với OnlineMath