Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(m=\sqrt[3]{x^2}\)và \(n=\sqrt[3]{y^2}\)
=> m3 = x2 và n3 = y2
Ta có :\(\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{x^2y^4}}=a\)
=> \(\sqrt{m^3+\sqrt[3]{m^6n^3}}+\sqrt{n^3+\sqrt[3]{m^3n^6}}=a\)
=> \(\sqrt{m^3+m^2n}+\sqrt{n^3+mn^2}=a\)
=> \(\sqrt{m^2\left(m+n\right)}+\sqrt{n^2\left(m+n\right)}=a\)
=> \(\sqrt{m+n}\left(m+n\right)=a\)
=> \(\left(\sqrt{m+n}\right)^3=\left(\sqrt[3]{a}\right)^3\)
=>\(\sqrt{m+n}=\sqrt[3]{a}\)
=> \(m+n=\left(\sqrt[3]{a}\right)^2\)
=> \(\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\)
Đặt * \(\sqrt[3]{x^2}=m\Rightarrow x^2=m^3\)
* \(\sqrt[3]{y^2}=n\Rightarrow y^2=n^3\)
Áp dụng vào biểu thức trên, ta có:
\(\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{x^2y^4}}=a\)
\(\Rightarrow\sqrt{m^3+m^2n}+\sqrt{n^3+n^2m}=a\left(1\right)\)
Bình phương 2 vế, ta được:
\(\left(1\right)\Leftrightarrow m^3+n^3+mn\left(m+n\right)+2\sqrt{m^2n^2\left(m+n\right)}=a^2\)
\(\Leftrightarrow m^3+n^3+3mn\left(m+n\right)=a^2\)
\(\Leftrightarrow\left(m+n\right)^3=a^2\)
\(\Leftrightarrow m+n=\sqrt[3]{a^2}\)
\(\Leftrightarrow\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\left(đpcm\right)\)
(Chúc bạn học giỏi nha!)