K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 cho 3 

Ta có :P không chia hết cho 2

=> P-1 và P+1 là 2 số chẵn liên tiếp => (P-1)(P+1) chia hết cho 8 (1)

Mặt khác:P không chia hết cho 3

Nếu P= 3k +1 thì P-1 =3k chia hết cho 3 => (P-1(P+1) chia hết cho 3

Tương tự: Nếu P= 3k+2 thì P+1=3k +3 chia hết cho 3 => (P-1(P+1) chia hết cho 3(2)

Từ (1)(2)=>(P-1)(P+1) chia hết cho 8 cho 3 mà (8;3)=1 =>(P-1)(P+1) chia hết cho 24

23 tháng 11 2020

mod là j

mod là viết tắt của module, là kiến thức liên quan đến đồng dư nha bạn

9 tháng 8 2016

Vì 2n+1 là số chính phương lẻ nên 2n + 1 = 1 (mod8) => 2n chia hết cho 8 => n chia hết cho 4

Do đó n+1 cũng là số lẻ, suy ra n + 1 = 1 (mod8) => n chia hết cho 8

Lại có (n + 1) (2n + 1) = 3n + 2

Ta thấy 3n + 2 = 2 (mod3)

Suy ra (n + 1) (2n + 1) = 2 (mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ nên n + 1 = 2n + 1 = 1 (mod3)

Do đó n chia hết cho 3

21 tháng 8 2018

đặt \(\left\{{}\begin{matrix}2n+1=a^2\\3n+1=b^2\end{matrix}\right.\)(\(a,b\in Z\))

\(\Rightarrow a^2+b^2=5n+2\equiv2\left(mod5\right)\)

số chính phương chia 5 chỉ có thể dư 0;1;4 nên \(a^2\equiv1\left(mod5\right);b^2\equiv1\left(mod5\right)\)\(\Rightarrow2n+1\equiv1\left(mod5\right)\Rightarrow n⋮5\)(1)

giờ cần chứng minh \(n⋮8\)

từ cách đặt ta cũng suy ra \(n=b^2-a^2\)

vì số chính phương lẻ chia 8 dư 1 mà 2n+1 lẻ \(\Rightarrow a^2\equiv1\left(mod8\right)\)hay \(2n\equiv0\left(mod8\right)\)\(\Rightarrow n⋮4\) nên n chẵn \(\Rightarrow b^2=3n+1\)cũng là số chính phương lẻ \(\Rightarrow b^2\equiv1\left(mod8\right)\)

do đó \(b^2-a^2\equiv0\left(mod8\right)\)hay \(n⋮8\)(2)

từ (1) và (2) \(\Rightarrow n⋮40\)(vì gcd(5;8)=1)

25 tháng 2 2017

Ta thấy: (n,6)=1

=> n lẻ, đặt: n=2k+1

=> (n-1)(n+1)=(2k+1-1)(2k+1+1)=2k.2(k+1)=4k(k+1)

Ta thấy: k(k+1) là tích 2 số nguyên liên tiếp => (n-1)(n+1) \(⋮\)8

Do (n,6)=1

=> n không chia hết cho 3:

=> n=3k+1 hoặc n=3k-1

Nếu n=3k-1 => n+1 \(⋮\)3

Nếu n=3k+1 => n-1\(⋮\)3

Vậy (n-1)(n+1) \(⋮\)3 với mọi n

Mà (3,8)=1

=> (n-1)(n+1)\(⋮\)3.8=24 (ĐPCM)

13 tháng 12 2023

ĐPCM l j vậy ạ

22 tháng 10 2015

câu 2: ta có 8p(8p+1)(8p+2) chia hết cho 3

=>16p(8p+1)(4p+1) chia het cho 3

mà 16 không chia hết cho 3,p và 8p+1 là snt >3 nên không chia hết cho 3
=>4p+1 chia hết cho 3

https://olm.vn/hoi-dap/detail/1317447057.html " VÀO ĐI MAN BÀI I HỆT YOU IK "

15 tháng 1 2020

Vì cộng thêm 1 thì n chia hết cho 2, cộng thêm 2 thì n chia hết cho 3, cộng thêm 3 thì n chia hết cho 4, cộng thêm 4 thì n chia hết cho 5, cộng thêm 5 thì n chia hết cho 6, cộng thêm 6 thì n chia hết cho 7 nên ta có : n chia cho 2 dư 1, n chia cho 3 dư 2, n chia cho 4 dư 3, n chia cho 5 dư 4, n chia cho 6 dư 5 và n chia cho 7 dư 6

\(\Rightarrow\)n-1\(⋮\)2, n-2\(⋮\)3, n-3\(⋮\)4, n-4\(⋮\)5, n-5\(⋮\)6 và n-6\(⋮\)7

\(\Rightarrow\)n-1+2\(⋮\)2, n-2+3\(⋮\)3, n-3+4\(⋮\)4, n-4+5\(⋮\)5, n-5+6\(⋮\)6 và n-6+7\(⋮\)7

\(\Rightarrow\)n-1 chia hết cho cả 2,3,4,5,6,7

\(\Rightarrow\)n-1\(\in\)BC(2,3,4,5,6,7)

Ta có : 2=2

           3=3

           4=22

           5=5

           6=2.3

           7=7

\(\Rightarrow\)BCNN(2,3,4,5,6,7)=22.3.5.7=420

\(\Rightarrow\)BC(2,3,4,5,6,7)=B(420)={0;420;840;1260;...}

Mà 1<n

n\(\in\){421;841;1261;...}

Vậy n\(\in\){421;841;1261;...}