Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n = 0 thì đúng.
Dễ thấy khi \(x^a+\frac{1}{x^a}=x^{-a}+\frac{1}{x^{-a}}\)nên ta chỉ cần chứng minh nó đúng với n \(\in\)Z+
Với n = 2 thì \(\Rightarrow x^2+\frac{1}{x^2}+2=\left(x+\frac{1}{x}\right)^2\)là số nguyên
\(\Rightarrow x^2+\frac{1}{x^2}\)là số nguyên.
Giả sử nó đúng đến n = k
\(\Rightarrow\hept{\begin{cases}\frac{1}{x^{k-1}}+x^{k-1}\\x^k+\frac{1}{x^k}\end{cases}}\)đều là số nguyên.
Ta chứng minh với n = k + 1 thì
xk+1 + \(\frac{1}{x^{k+1}}\)cũng là số nguyên
Ta có:
\(\left(x+\frac{1}{x}\right)\left(x^k+\frac{1}{x^k}\right)=x^{k+1}+\frac{1}{x^{k+1}}+x^{k-1}+\frac{1}{x^{k-1}}\)
\(\Rightarrow x^{k+1}+\frac{1}{x^{k+1}}\)là số nguyên.
Vậy ta có điều phải chứng minh là đúng.
Xét \(n=2^k.q\) trong đó \(q\)là số lẻ
ta có \(2^n+1=\left(2^{2^k}\right)^q+1⋮\left(2^{2^k}+1\right)\)
vì \(q\)lẻ
ta được:
nếu \(k\ge1\) thì là hợp số
\(k=0\) cũng là hợp số
nên \(q=1\)
khi đó \(n=2^k\left(đpcm\right)\)
Nếu p>3 mà p là SNT nên p ko chia hết cho 3
Suy ra p^2 chia 3 dư 1
Suy ra p^2+8 chia hết cho 3,mà p^2+8>3 nên p^2+8 là HS(L)
Vậy p nhỏ hơn hoặc bằng 3
Nếu p=2 thì p^2+8 là HS (L)
Khí đó p=3
Suy ra p^3+8p+2=53 là SNT(đpcm)
b)
đặt A= 1+2^1+2^2+.....+2^(n-1) (1) (điều kiện: n là hợp số)
=>2A =2.[1+2^1+2^2+.....+2^(n-1)]
=>2A=2^1+2^2+.....+2^(n-1) +2^n (2)
lấy (2) - (1) vế theo vế ta có:
2A-A= 2^n -1
=> A= 2^n -1
=> 2^n -1 = 1+2^1+2^2+.....+2^(n-1)
vì n là hợp số =>n=a.b ( a,b thuộc N ; a >1; b>1)
=> 1+2^1+2^2+.....+2^(n-1) =1+2^1+2^2+.....+2^(a.b-1)
trong tổng 1+2^1+2^2+.....+2^(a.b-1) có (a.b-1-0) :1+1 =a.b số hạng
=> tổng 1+2^1+2^2+.....+2^(a.b-1) có thể chia thành b nhóm ; hoặc a nhóm
=>1+2^1+2^2+.....+2^(a.b-1) chia hết cho a và chia hết cho b mà a,b thuộc N ; a >1; b>1
=>1+2^1+2^2+.....+2^(a.b-1) là hợp số => 2^n - 1 cũng là hợp số
ra đề ngu
A^2 là chính phương của A đó chứng minh cái gì nửa
A ko phải chính phương của 1 số nào đâu
Vd:A=13=4+9
Nếu n là hợp số thì n có dạng \(pk\) với p,k là các số nguyên dương
Khi đó:\(2^n-1=2^{pk}-1=\left(2^p\right)^k-1⋮2^p-1\)
Như vậy ta có đpcm