Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh được
\(a^2+b^2+c^2\) ≥\(\dfrac{\left(a+b+c\right)^2}{3}\)
A=\(x^4+y^4+z^4\) ≥ \(x^2y^2+y^2z^2+z^2x^2\) ≥ \(\dfrac{\left(xy+yz+zx\right)^2}{3}=\dfrac{1}{3}\)
=>\(x^4+y^4+z^4\) ≥ \(\dfrac{1}{3}\left(đpcm\right)\)
Chúc Bạn Học Tốt
Áp dùng BĐT Cosi ta có:
\(\frac{x^3}{yz}+y+z\ge3\sqrt[3]{\frac{x^3}{yz}\cdot y\cdot z}=3x\)
\(\frac{y^3}{xz}+z+x\ge3\sqrt[3]{\frac{z^3}{zx}\cdot z\cdot x}=3y\)
\(\frac{z^3}{yx}+x+y\ge3\sqrt[3]{\frac{z^3}{xy}\cdot x\cdot y}=3z\)
\(\Rightarrow\frac{x^3}{xy}+y+z+\frac{y^3}{zx}+x+z+\frac{z^3}{xy}+x+y\ge3x+3y+3z\)
\(\Rightarrow\frac{x^3}{yz}+\frac{y^3}{xz}+\frac{z^3}{xy}\ge3\left(x+y+z\right)-2\left(x+y+z\right)\)\(=x+y+z\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^3}{yz}=y=z\\\frac{y^3}{zx}=x=z\\\frac{z^3}{yz}=y=x\end{cases}\Rightarrow x=y=z}\)
Ta có:
\(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};\frac{1}{4^2}< \frac{1}{3\cdot4}.....;\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{\left(n-1\right)n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\\ =1-\frac{1}{n}< 1\\ \Rightarrow A< 1\)
Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right).n}\)
\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right).n}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(\Rightarrow A< 1-\dfrac{1}{n}< 1\)
Vậy \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)
Áp dụng bđt Cauchy-Schwarz và AM-GM:
\(x^4+y^4+z^4\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3}\ge\dfrac{\left(xy+yz+xz\right)^2}{3}=\dfrac{1}{3}\)