Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
\(=1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{z+x}=3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)
\(\Rightarrow x+y+z=\frac{3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)}{\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}}=\frac{3+\frac{7}{10}}{\frac{2}{5}}=\frac{37}{4}\)
Ta có :
\(\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+x}+\frac{1}{z+x}\right)\)
\(=1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{z+x}=3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)
\(\Rightarrow x+y+z=\frac{3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)}{\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}}=\frac{3+\frac{7}{10}}{\frac{2}{5}}=\frac{37}{4}\)
a./ \(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}=\frac{x-y+z}{5-7+4}=\frac{-10}{2}=-5\)
\(\Rightarrow x=-25;y=-35;z=-20\)
b./ \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{-7}=\frac{x+y-z}{5-4-\left(-7\right)}=\frac{-40}{6}=-5\)
\(\Rightarrow x=-25;y=20;z=35\)
x=by+cz;y=ax+cz;z=ax+by
=>x+y+z=2(ax+by+cz)
\(\Leftrightarrow\frac{x+y+z}{2}=ax+by+cz\)
\(\Leftrightarrow y+z=\frac{x+y+z}{2}+ax;z+x=\frac{x+y+z}{2}+by;x+y=\frac{x+y+z}{2}+cz\)
\(\Leftrightarrow\frac{y+z-x}{2}=ax;\frac{z+x-y}{2}=by;\frac{x+y-z}{2}=cz\)
\(\Leftrightarrow\frac{y+z-x}{2x}=a;\frac{z+x-y}{2y}=b;\frac{x+y-z}{2z}=c\)
\(\Rightarrow A=\frac{1}{1+\frac{x+y-z}{2z}}+\frac{1}{1+\frac{y+z-x}{2x}}+\frac{1}{1+\frac{z+x-y}{2y}}=\frac{1}{\frac{x+y+z}{2x}}+\frac{1}{\frac{x+y+z}{2y}}+\frac{1}{\frac{x+y+z}{2z}}\)
\(=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Vì a,b,c,d \(\inℕ^∗\Rightarrow a+b+c< +b+c+d\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
Tương tự
\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)
\(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)
\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)
Vì a,b,c,d \(\inℕ^∗\)\(\Rightarrow a+b+c>a+b\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)
Tương tự
\(\hept{\begin{cases}\frac{b}{a+b+d}< \frac{b}{a+b}\\\frac{c}{a+c+d}< \frac{c}{c+d}\\\frac{d}{b+c+d}< \frac{d}{a+b+c+d}\end{cases}}\)
\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)
Vậy \(1< M< 2\)nên M không là số tự nhiên