\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\) thì \(\frac{u}{3}=\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

Có : \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

\(\Leftrightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\)

Theo tính chất dãy tỉ số , có :

\(\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{u+2+u-2}{v+3+v-3}=\frac{u+2-u+2}{v+3-v+3}\)

\(\Rightarrow\frac{2u}{2v}=\frac{4}{6}\)

\(\Leftrightarrow\frac{u}{v}=\frac{2}{3}\Leftrightarrow\frac{u}{2}=\frac{v}{3}\)

18 tháng 7 2017

Ta có:

  \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

<=> (u+2).(v-3)=(u-2).(v+3)

<=>uv+2v-3u-6=uv-2v+3u-6

<=>2v-3u=3u-2v

<=>2v+2v=3u+3u

<=>4v=6u

<=>2v=3u

<=>\(\frac{u}{2}=\frac{v}{3}\)

18 tháng 9 2016

\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{\left(u+2\right)-\left(u-2\right)}{\left(v+3\right)-\left(v-3\right)}=\frac{4}{6}=\frac{2}{3}\)

\(\Rightarrow\frac{u+2}{v+3}=\frac{2}{3}=\frac{u+2-2}{v+3-3}=\frac{u}{v}\Rightarrow\frac{u}{v}=\frac{2}{3}\)

Cách của bạn kia là cách chứng minh tương đương.Mình nghĩ nó ko hay cho lắm vì phải dựa vào đpcm mà suy luận.

9 tháng 8 2016

Mình lí luận ngược nha :

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{u}{2}=\frac{v}{3}\Rightarrow\frac{u}{v}=\frac{2}{3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\Rightarrow\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

11 tháng 1 2017

Giải:

Ta có: \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{u}{v}=\frac{2}{3}\)

\(\Rightarrow\frac{u}{v}=\frac{2}{3}\Rightarrow\frac{u}{2}=\frac{v}{3}\)

Vậy \(\frac{u}{2}=\frac{v}{3}\)

11 tháng 1 2017

thừa cái dòng chữ cuối cùng nhá

28 tháng 9 2016

Ta có:

\(\frac{u}{v}=\frac{v}{t}\Rightarrow\frac{u^2}{v^2}=\frac{v^2}{t^2}=\frac{u}{v}.\frac{v}{t}=\frac{u}{t}\) (1)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{u^2}{v^2}=\frac{v^2}{t^2}=\frac{u^2+v^2}{v^2+t^2}\) (2)

Từ (1) và (2) => \(\frac{u^2+v^2}{v^2+t^2}=\frac{u}{t}\left(đpcm\right)\)

28 tháng 9 2016

thanks bn nhìu lắm soyeon!

18 tháng 5 2016

Ta có:

\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

<=> \(\left(u+2\right)\left(v-3\right)=\left(u-2\right)\left(v+3\right)\)

<=> \(uv+2v-3u-6=uv-2v+3u-6\)

<=> \(2v-3u=3u-2v\)

<=> \(2v+2v=3u+3u\)

<=> \(4v=6u\)

<=> \(2v=3u\)

<=> \(\frac{u}{2}=\frac{v}{3}\)

18 tháng 5 2016

Ta có:


\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

\(\Leftrightarrow\left(u+2\right)\left(v-3\right)=\left(u-2\right)\left(v+3\right)\)

19 tháng 12 2018

áp dụng t/c DTSBN,ta có:

\(\frac{ab+ac}{2}=\frac{bc+ab}{3}=\frac{ca+bc}{4}=\frac{ab+ac-bc-ab+ca+bc}{2-3+4}=\frac{2ac}{3}\)

\(\frac{ab+ac}{2}=\frac{2ac}{3}\Leftrightarrow3ab+3ac=4ac\Leftrightarrow3ab=ac\Leftrightarrow3b=c\Leftrightarrow\frac{b}{1}=\frac{c}{3}\Rightarrow\frac{b}{5}=\frac{c}{15}\)(vì a khác 0)(!)

\(\frac{ca+cb}{4}=\frac{2ac}{3}\Leftrightarrow3ac+3cb=8ac\Leftrightarrow3bc=5ac\Rightarrow3b=5a\Rightarrow\frac{a}{3}=\frac{b}{5}\)(vì c khác 0)(@)

từ (!) và (@) => đpcm

13 tháng 7 2020

Câu 1b sai rồi nhé cậu!

4k . 5k = 20

=> 20.k = 20

=> k = 20 : 20 = 1

13 tháng 7 2020

ơ cậu 4k . 5k = 20k^2 chứ ??

Thế k = 1 hoặc k =-1 mà ???

8 tháng 9 2019

Bài 1:

a) \(\left(\frac{1}{2}\right)^2\)\(\left(\frac{1}{2}\right)^5\)

Ta có: \(\left(\frac{1}{2}\right)^2=\frac{1}{4}.\)

\(\left(\frac{1}{2}\right)^5=\frac{1}{32}.\)

\(\frac{1}{4}< \frac{1}{32}.\)

=> \(\left(\frac{1}{2}\right)^2< \left(\frac{1}{2}\right)^5.\)

b) \(\left(2,4\right)^3\)\(\left(2,4\right)^2\)

Ta có: \(\left(2,4\right)^3=13,824.\)

\(\left(2,4\right)^2=5,76.\)

\(13,284>5,76.\)

=> \(\left(2,4\right)^3>\left(2,4\right)^2.\)

c) \(\left(-1\frac{1}{2}\right)^2\)\(\left(-1\frac{1}{2}\right)^3\)

Ta có: \(\left(-1\frac{1}{2}\right)^2=\left(-\frac{3}{2}\right)^2=\frac{9}{4}.\)

\(\left(-1\frac{1}{2}\right)^3=\left(-\frac{3}{2}\right)^3=-\frac{27}{8}.\)

Vì số dương luôn lớn hơn số âm nên \(\frac{9}{4}>-\frac{27}{8}.\)

=> \(\left(-1\frac{1}{2}\right)^2>\left(-1\frac{1}{2}\right)^3.\)

Chúc bạn học tốt!

25 tháng 12 2016

\(\left[\left(-\frac{4}{5}\right).\left(\frac{-5}{4}\right)\right]^3=1^3=1\)

\(\frac{3}{5}+\frac{3.\left(-4\right)}{4\cdot5}=\frac{3}{5}+\frac{-3}{5}=0\)

\(\frac{5}{9}-\frac{1}{6}-\frac{4}{9}=\frac{5}{9}-\frac{4}{9}-\frac{1}{6}=\frac{1}{9}-\frac{1}{6}=-\frac{1}{18}\)