Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Nhân cả hai vế với b, ta có đpcm
b) Đề sai
c) Nhân cả hai vế với b, ta có đpcm
d) Bạn trên đã làm r , mình k trình bày lại nữa
d,
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\) \(a=k\times b\) ; \(c=k\times d\)
Ta có :
\(\frac{a^2}{b^2}=\frac{\left(k\times b\right)^2}{b^2}=\frac{k^2\times b^2}{b^2}=k^2\) (1)
\(\frac{c^2}{d^2}=\frac{\left(k\times d\right)^2}{d^2}=\frac{k^2\times d^2}{d^2}=k^2\) (2)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(k\times b\right)^2+\left(k\times d\right)^2}{b^2+d^2}=\frac{k^2\times b^2+k^2\times d^2}{b^2+d^2}=\frac{k^2\times\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (3)
Từ (1) ; (2) và (3) => \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1
a,Ta có: \(\frac{a^2+b^2}{a^2+c^2}=\frac{bc+b^2}{bc+c^2}=\frac{b\left(c+b\right)}{c\left(c+b\right)}=\frac{b}{c}\)
b, \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+a\right)+\left(c-a\right)}=\frac{2a}{2c}=\frac{a}{c}\)(1)
Mặt khác: \(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}=\frac{2b}{2a}=\frac{b}{a}\)(2)
Từ (1);(2)\(\Rightarrow\frac{a}{c}=\frac{b}{a}\Leftrightarrow a^2=bc\)
c, Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{b}=\frac{c}{d}=\frac{m}{n}=\frac{a+c+m}{b+d+n}\)
Ta có : \(a^2=bc\)
\(\Rightarrow\frac{a^2+b^2}{a^2+c^2}=\frac{bc+b^2}{bc+c^2}=\frac{b\left(b+c\right)}{c\left(b+c\right)}=\frac{b}{c}\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(\frac{a}{b}< \frac{c}{d}=k\Rightarrow a< bk;c=dk\Rightarrow a+c< bk+dk=\left(b+d\right)k\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{\left(b+d\right)k}{b+d}=k\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Ta có : \(\frac{a}{b}>\frac{a+c}{b+d}\)
<=> \(a\left(b+d\right)>b\left(a+c\right)\)
<=> \(ab+ad>bc+ba\)
<=> \(ad>bc\)[ Đoạn này ta thấy ba bên vế trái và vế phải giống nhau nên rút gọn bớt đi ]
<=> \(a>b\)
=> \(\frac{a}{b}>\frac{a+c}{b+d}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad>bc\)
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
\(\Rightarrow ad+cd< bc+cd\)
\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)
Từ (1); (2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)
\(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad=bc\)
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(b-d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
\(\Rightarrow ad+cd< bc+cd\)
\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
Từ ( 1 ) và ( 2 )
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a.a}{bc}\) (thay b+c = a) (1)
\(\frac{a}{b}\times\frac{a}{c}=\frac{a.a}{bc}\) (2)
Từ (1) và (2) suy ra: \(\frac{a}{b}+\frac{a}{c}=\frac{a}{b}\times\frac{a}{c}\) (đpcm)
b) \(c=a+b\)\(\Rightarrow\)\(a=c-b\)
Ta có: \(\frac{a}{b}-\frac{a}{c}=\frac{ac-ab}{bc}=\frac{a\left(c-b\right)}{bc}=\frac{a^2}{bc}\) (thay c-b = a) (3)
\(\frac{a}{b}\times\frac{a}{c}=\frac{a^2}{bc}\) (4)
Từ (3) và (4) suy ra: \(\frac{a}{b}-\frac{a}{c}=\frac{a}{b}\times\frac{a}{c}\) (đpcm)
khó quá bạn ak
Đề sai rồi