\(\left[ab\left(ab-2cd\right)+c^2+d^2\right].\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

Ta có:

\(\left[ab\left(ab-2cd\right)+c^2d^2\right].\left[ab\left(ab-2\right)+2\left(ab+1\right)\right]=0\)

\(\Leftrightarrow\left(a^2b^2-2acbd+c^2d^2\right).\left(a^2b^2-2ab+2ab+2\right)=0\)

\(\Leftrightarrow\left(ab-cd\right)^2.\left(a^2b^2+2\right)=0\)

\(a^2b^2+2>0\forall a;b\)

\(\Leftrightarrow\left(ab-cd\right)^2=0\)

\(\Leftrightarrow ab-cd=0\)

\(\Leftrightarrow ab=cd\left(đpcm\right)\)

20 tháng 10 2015

http://olm.vn/hoi-dap/question/228341.html    ở đây nè

28 tháng 11 2018

Ta có: 

\(\left[ab\left(ab-2cd\right)+c^2d^2\right]\left[ab\left(ab-2\right)+2\left(ab+1\right)\right]\)

\(=\left(a^2b^2-2abcd+c^2d^2\right)\cdot\left(a^2b^2-2ab+2ab+2\right)\)

=\(\left(ab-cd\right)^2\left(a^2b^2+2\right)=0\)

Vif \(a^2b^2+2>0\)nên \(ab-cd=0\Leftrightarrow ab=cd\)

Suy ra 4 tỉ lên thức:

\(\orbr{\begin{cases}\frac{a}{c}=\frac{d}{b}\\\frac{b}{c}=\frac{d}{a}\end{cases} và} \orbr{\begin{cases}\frac{a}{d}=\frac{c}{b}\\\frac{b}{d}=\frac{c}{a}\end{cases}}\)

28 tháng 11 2018

Tỉ lên thức là gì vậy bạn?

4 tháng 7 2015

\(\Leftrightarrow\left(ad+bc\right)^2=4abcd\Leftrightarrow a^2d^2+b^2c^2+2abcd-4abcd=0\)\(\Leftrightarrow a^2d^2-2abcd+b^2d^2=0\)
\(\Leftrightarrow\left(ad-bc\right)^2=0\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)(với b và d khác 0)

Ta luôn dùng dấu tương đương nên không cần chứng minh ngược lại.

 

 

11 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{2b}{2d}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{\left(a-2b\right)^2}{\left(c-2d\right)^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)(vì \(\frac{a}{c}=\frac{b}{d}\))

\(\Rightarrow\frac{ab}{cd}=\frac{\left(a-2b\right)^2}{\left(c-2d\right)^2}\left(đpcm\right)\)