\(|a|+|b|\ge2\) Thì PT sau có nghiệm 

\(2ax^2+bx+1-a=...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2020

Xét \(a=0\Rightarrow|b|\ge2\)Khi đó phương trình chắc chắn có nghiệm \(x=\frac{1}{b}\)

Xét: \(a\ne0,\) \(\Delta=b^2-2.2a\left(1-a\right)=4a^2-4a+b^2\)

\(|a|+|b|\ge2\Leftrightarrow|b|\ge2-|a|\Rightarrow b^2\ge a^2-4|a|+4\)

\(\Rightarrow\Delta\ge5a^2-4a-4|a|+4\)

Xét: \(a\le0\Rightarrow|a|=-a\Rightarrow\Delta=5a^2-4a-4|a|+4=5a^2+4>0\)---> phương trình luôn có nghiệm.

\(a\ge0\Rightarrow|a|=a\Rightarrow\Delta=5a^2-8a+4=5\left(x-\frac{4}{5}\right)^2+\frac{4}{5}>0\)---> phương trình luôn có nghiệm.

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Lời giải:
a)

Để pt có nghiệm thì $\Delta'=4+m\geq 0\Leftrightarrow m\geq -4(1)$

Để nghiệm $x_1,x_2< 3$ thì:

\(\left\{\begin{matrix} (x_1-3)(x_2-3)> 0\\ x_1+x_2< 6\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} x_1x_2-3(x_1+x_2)+9>0\\ x_1+x_2< 6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -m-3.4+9>0\\ 4< 6\end{matrix}\right.\Leftrightarrow m< -3\)

Do đó để tồn tại nghiệm $x\geq 3$ thì $m\geq -3(2)$

Từ $(1);(2)\Rightarrow m\geq -3$

b) Làm tương tự phần a.

2 tháng 8 2019

Giả sử không có BĐT thức nào có nghiệm. Khi đó:

\(\Delta_1=\left(2b\right)^2-4ac=4b^2-4ac< 0\Leftrightarrow b^2< ac\left(1\right)\)

\(\Delta_2=\left(2c\right)^2-4ab=4c^2-4ab< 0\Leftrightarrow c^2< ab\left(2\right)\)

\(\Delta_3=\left(2a\right)^2-4bc=4a^2-4bc< 0\Leftrightarrow a^2< bc\left(3\right)\)

Từ (1), (2), (3) suy ra b2 . c2 . a2 < ac . ab . bc (Vì các vế của chúng đều phải dương)

\(\Leftrightarrow\left(abc\right)^2< \left(abc\right)^2\), vô lí

Do đó giả thiết sai. Vậy ít nhất một trong 3 BĐT có nghiệm

7 tháng 7 2019

Mình chưa học cách chứng minh mệnh đề nhưng mk chứng minh được hệ thức Vi-et:

\(ax^2+bx+c=0\)

\(\Delta=b^2-4ac\)

để phương trình có 2 nghiệm thì \(\Delta\ge0\)

\(\Rightarrow b^2-4ac\ge0\)

phương trình có 2 nghiệm là

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}\)

Ta có

\(x_1+x_2=\frac{-b+\sqrt{\Delta}}{2a}+\frac{-b-\sqrt{\Delta}}{2a}\)

               \(=\frac{-2b}{2a}=-\frac{b}{a}\)

\(x_1.x_2=\frac{-b+\sqrt{\Delta}}{2a}.\frac{-b-\sqrt{\Delta}}{2a}\)

          \(=\frac{\left(-b+\sqrt{\Delta}\right).\left(-b-\sqrt{\Delta}\right)}{2a.2a}\)

           \(=\frac{b^2-\Delta}{4a^2}\)

              \(=\frac{b^2-\left(b^2-4ac\right)}{4a^2}\)

               \(=\frac{4ac}{4a^2}=\frac{c}{a}\)

8 tháng 2 2020

nhìn vào thấy bài khá khó đấy

16 tháng 5 2017

Mệnh đề đảo là : "Nếu \(f\left(x\right)\) có một nghiệm bằng 1 thì \(a+b+c=0\)". "Điều kiện cần và đủ để \(f\left(x\right)=ax^2+bx+c\) có một nghiệm bằng 1 là \(a+b+c=0\)"

11 tháng 8 2019

Theo hệ thức vi-et ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{matrix}\right.\)

\(P=\frac{5a^2-6ab+b^2}{2a^2-2ab+ac}=\frac{5-\frac{6b}{a}+\frac{b^2}{a^2}}{2-\frac{2b}{a}+\frac{c}{a}}=\frac{5+6\left(x_1+x_2\right)+\left(x_1+x_2\right)^2}{2+2\left(x_1+x_2\right)+x_1x_2}\)

Mặt khác :

\(\left\{{}\begin{matrix}x_1\le x_2\\x_2\le1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_1^2\le x_1x_2\\x_2^2\le1\end{matrix}\right.\Rightarrow x_1^2+x_2^2\le x_1x_2+1\Rightarrow\left(x_1+x_2\right)^2\le3x_1x_2+1\)

\(\Rightarrow P\le\frac{6+6\left(x_1+x_2\right)+3x_1x_2}{2+2\left(x_1+x_2\right)+x_1x_2}=3\)

NV
29 tháng 2 2020

a/ \(\left[{}\begin{matrix}\Delta>0\\\left\{{}\begin{matrix}\Delta\le0\\a>0\end{matrix}\right.\end{matrix}\right.\)

b/ \(\left[{}\begin{matrix}\Delta\ge0\\\left\{{}\begin{matrix}\Delta\le0\\a>0\end{matrix}\right.\end{matrix}\right.\)

c/ \(\left[{}\begin{matrix}\Delta\ge0\\\left\{{}\begin{matrix}a< 0\\\Delta\le0\end{matrix}\right.\end{matrix}\right.\)

d/ \(\left[{}\begin{matrix}\Delta\ge0\\\left\{{}\begin{matrix}a< 0\\\Delta\ge0\end{matrix}\right.\end{matrix}\right.\)

Câu 1: C

Câu 2: C

NV
29 tháng 2 2020

\(a-b+b+\frac{1}{b\left(a-b\right)}\ge3\sqrt[3]{\frac{\left(a-b\right)b.1}{b\left(a-b\right)}}=3\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

\(VT=a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+\frac{b+1}{2}+\frac{b+1}{2}-1\)

\(VT\ge4\sqrt[4]{\frac{4\left(a-b\right)\left(b+1\right)^2}{4\left(a-b\right)\left(b+1\right)^2}}-1=3\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=1\\a=2\end{matrix}\right.\)

\(\frac{a-b}{2}+\frac{a-b}{2}+\frac{1}{b\left(a-b\right)^2}+b\ge4\sqrt[4]{\frac{b\left(a-b\right)^2}{4b\left(a-b\right)^2}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=\frac{3\sqrt{2}}{2}\\b=\frac{\sqrt{2}}{2}\end{matrix}\right.\)