\(\sqrt{\frac{a^2}{b}}\)+\(\sqrt{\frac{b^2}{a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

ta có: \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}.\)  (*)

\(\Leftrightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)( vì a>0 ; b>0)

\(\Leftrightarrow\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}.\sqrt{b}}\ge\sqrt{a}+\sqrt{b}\)

\(\Leftrightarrow a\sqrt{a}+b\sqrt{b}\ge\left(\sqrt{a}+\sqrt{b}\right)\sqrt{a.b}\) ( vì \(\sqrt{ab}\ge0\) )

\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{a.b}+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)\)

\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\left(a-2\sqrt{a.b}+b\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)  luôn đúng vì \(\sqrt{a}+\sqrt{b}\ge0;\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) với a>0;b>0

=>(*) luôn đúng => đpcm

25 tháng 10 2016

chỗ ấy 1 số 2 thôi .các bạn giúp mik với

NV
5 tháng 3 2019

2/

a/ \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\sqrt{\sqrt{a}.\frac{1}{\sqrt{a}}}=2\), dấu "=" khi \(a=1\)

b/ \(a+b+\frac{1}{2}=a+\frac{1}{4}+b+\frac{1}{4}\ge2\sqrt{a.\frac{1}{4}}+2\sqrt{b.\frac{1}{4}}=\sqrt{a}+\sqrt{b}\)

Dấu "=" khi \(a=b=\frac{1}{4}\)

c/ Có lẽ bạn viết đề nhầm, nếu đề đúng thế này thì mình ko biết làm

Còn đề như vậy: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\) thì làm như sau:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\) ; \(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\); \(\frac{1}{x}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\)

Cộng vế với vế ta được:

\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\ge\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{yz}}+\frac{2}{\sqrt{xz}}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\)

Dấu "=" khi \(x=y=z\)

d/ \(\frac{\sqrt{3}+2}{\sqrt{3}-2}-\frac{\sqrt{3}-2}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\frac{\left(\sqrt{3}-2\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}\)

\(=\frac{7+4\sqrt{3}}{3-4}-\frac{7-4\sqrt{3}}{3-4}=-7-4\sqrt{3}+7-4\sqrt{3}=-8\sqrt{3}\)

e/ \(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=\frac{\left(a-b\right)\left(a+b-\sqrt{ab}\right)}{\sqrt{ab}}\)

\(=\frac{a^2-b^2}{\sqrt{ab}}-\left(a-b\right)\) (bạn chép đề sai)

5 tháng 3 2019

@Akai Haruma Cô giúp em với ạ!!!

5 tháng 8 2017

b2 \(\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}=\sqrt{x}.\sqrt{1-\frac{1}{x}}+\sqrt{y}.\)\(\sqrt{y}.\sqrt{1-\frac{1}{y}}+\sqrt{z}.\sqrt{1-\frac{1}{z}}\)rồi dung bunhia là xong

5 tháng 8 2017

A= \(\frac{1}{a^3}\)\(\frac{1}{b^3}\)\(\frac{1}{c^3}\)\(\frac{ab^2}{c^3}\)\(\frac{bc^2}{a^3}\)\(\frac{ca^2}{b^3}\)

Svacxo:
3 cái đầu >= \(\frac{9}{a^3+b^3+c^3}\)

3 cái sau >= \(\frac{\left(\sqrt{a}b+\sqrt{c}b+\sqrt{a}c\right)^2}{a^3+b^3+c^3}\)

Cô-si: cái tử bỏ bình phương >= 3\(\sqrt{abc}\)

=> cái tử >= 9abc= 9 vì abc=1 
Còn lại tự làm

10 tháng 7 2019

Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)

Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)

Bài 2: Thêm đk a,b,c >0.

Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.

Bài 3: Nó sao sao ấy ta?

4 tháng 8 2017

(a+b)^2/2+(a+b)/4=((a+b)/2)(a+b+1/2)>=√ab(a+b+1/2) 

>>>Cần cm √ab(a+b+1/2)>=√ab(√a+√b)

khi và chỉ khi √ab(a+b-√a-√b+1/2)>=0>>>>√ab((√a-1/2)^2+(√b-1/2)^2)>=0(luôn đúng)

Dấu= xảy ra khi a=b=1/4

4 tháng 8 2017

Quên, cả hoặc a=b=0 nữa

6 tháng 7 2019

3/a) \(BĐT\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)(đúng với mọi x, y không âm)

Đẳng thức xảy ra khi x = y

b) \(BĐT\Leftrightarrow\frac{\left(x-y\right)^2}{xy}\ge0\) (đúng với mọi x, y không âm)

"=" <=> x = y

c) BĐT \(\Leftrightarrow2a+2b+2\ge2\sqrt{ab}+2\sqrt{a}+2\sqrt{b}\)

\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(a-2\sqrt{a}+1\right)+\left(b-2\sqrt{b}+1\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{a}-1\right)^2+\left(\sqrt{b}-1\right)^2\ge0\) (đúng)

"=" <=> a = b = 1

6 tháng 7 2019

1/ \(A=\sqrt{7-2\sqrt{7}.1+1}-\sqrt{7-2\sqrt{7}.\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{7}-1\right|-\left|\sqrt{7}-\sqrt{2}\right|\) (thực ra em nghĩ ko cần thêm trị tuyệt đối đâu nhưng thêm cho chắc:D)

\(=\sqrt{7}-1-\sqrt{7}+\sqrt{2}=\sqrt{2}-1\)

2/Em thấy nó sai sai nên thôi:(