Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)\(\frac{a}{b}=\frac{c}{d}\)=> \(ad=bc\)=> \(ad+ab=bc+ab\)=> a x ( b + d) = b x ( a + c )
=> \(\frac{a}{b}=\frac{a+c}{b+d}\left(đpcm\right)\)
\(b.\)\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)( Áp dụng tính chất dãy tỉ số bằng nhau )
=>\(\frac{a}{b}=\frac{c}{a}\)=> \(a^2=bc\)( đpcm)
TA CÓ \(\frac{a}{b}=\frac{c}{d}=\frac{p}{q}=\frac{am}{bm}=\frac{nc}{nd}=\frac{ep}{eq}\)
ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU TA CÓ
\(\frac{a}{b}=\frac{c}{d}=\frac{p}{q}=\frac{ma}{mb}=\frac{nc}{nd}=\frac{ep}{eq}=\frac{ma+nc+ep}{mb+nd+eq}\)(ĐPCM)
ADTC dãy tỉ số bằng nhau ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\hept{\begin{cases}a=b\cdot1=b\\b=c\cdot1=c\\c=a\cdot1=a\end{cases}\Leftrightarrow a=b=c}\)
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
<=> (a+b)(c-a)=(a-b)(c+a)
<=> ac+bc-a2-ab=ac-bc+a2-ab
<=> ac+bc-ab-ac+bc+ab=a2+a2
<=> (ac-ac) + (bc+bc) + (ab-ab) = 2a2
<=> 2bc=2a2
=> a2 = bc (đpcm)
ta có: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\left(a+b\right)\left(c-a\right)=\left(a-b\right)\left(a+a\right)\)\(ac-a^2+bc-ab==ac+a^2-bc-ac\)
\(\Rightarrow2a^2=2bc\)
\(\Rightarrow a^2=bc\)
đpcm
ai bt thì lm giúp tôi còn những ng ko bt đừng có xía vào, phiền lắm
viết nốt đề bài : thì 1/a^2 + 1/b^2 + 1/c^2 = 2
Từ 1/a + 1/b + 1/c = 2 bình phương hai vế ta có:
. . . (1/a + 1/b + 1/c)² = 2²
=> 1/a² + 1/b² + 1/c² + 2(1/ab + 1/bc + 1/ ca) = 4
=> 1/a² + 1/b² + 1/c² + 2(a + b + c)/abc = 4 (Quy đồng MTC= abc)
=> 1/a² + 1/b² + 1/c² + 2abc/abc = 4 (Vì a + b + c = abc)
=> 1/a² + 1/b² + 1/c² + 2 = 4
=> 1/a² + 1/b² + 1/c² = 2 (Đpcm)
áp dụng dãy tỉ số bằng nhau ta có
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
có \(a^2=bc=>a.a=bc=>\frac{a}{c}=\frac{b}{a}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}=>\frac{a+b}{a-b}=\frac{c+a}{c-a}=>đpcm\)
a2 = b.c => a.a = b.c = \(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}=>\frac{a+b}{a-b}=\frac{c+a}{c-a}\)điều cần minh chứng