\(n^5-n⋮30\) với n ∈ Z

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=n^5-n\)

Theo định lí nhỏ Fermat, ta có: 5 là số nguyên tố

nên \(A=n^5-n⋮5\left(1\right)\)

\(A=n^5-n=n\left(n^4-1\right)\)

\(=n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)

Vì n;n-1;n+1 là ba số liên tiếp

nên \(n\left(n+1\right)\left(n-1\right)⋮3!=6\)

=>A chia hết cho 6(2)

Từ (1)và (2) suy ra A chia hết cho 30

1 tháng 7 2017

giups mik ik

18 tháng 7 2017

\(A_n=n\left(n^2+1\right)\left(n^2+4\right)\)

\(=\left(n^3+n\right)\left(n^2+4\right)\)

\(=n^5+4n+5n^3\)

\(=n^5-n+5n+5n^3\)

Vì \(n^5\) co dạng \(n^{4k+1}\) (k thuộc N) nên \(n^5\) luôn có chữ số tận cùng giống n

\(\Rightarrow n^5-n=\overline{.....0}⋮5\)

Do đó \(n^5-n+5n+5n^3⋮5\) hay \(A_n⋮5\) (đpcm)

17 tháng 2 2017

\(A=\left(n-1\right)\left(n+1\right)\left(n^2\right)\left(n^2+1\right)\)

\(A=\left(n-1\right)n\left(n+1\right).n\left(n^2+1\right)\left(I\right)\)

\(A=\left[\left(n-1\right)\left(n+1\right).n^2\right]\left(n^2-4+5\right)\)

\(=\left(n-1\right)\left(n+1\right).n^2\left(n^2-2^2\right)+5\left(n-1\right)\left(n+1\right).n^2\)

\(=\left(n-1\right)\left(n+1\right).n^2\left(n-2\right)\left(n+2\right)+5\left(n-1\right)\left(n+1\right).n^2\)

\(=\left(n-2\right)\left(n-1\right)\left(n+1\right)\left(n+2\right).n^2+5\left(n-1\right)\left(n+1\right).n^2\left(II\right)\)

1)với (I) A là tích của 3 số tự nhiên liên tiếp => chia hết cho 2 &3

2) với bửu thức (II) A là tổng hai số hạng

số hạng đầu là tích của 5 số tự nhiên liên tiếp=> chia hết cho 5

số hạng sau hiển nhiên chia hết cho 5 do có thừa số 5

KL

Với (I) A chia hết cho 2&3

Với (II) A chia hết cho 5

(I)&(II)=> điều bạn muốn tìm