Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 gọi hai số chẵn đó là 2a và 2a+2
ta có 2a(2a+2)=4a^2+4a=4a(a+1)
vì a và a+1 là hai số liên tiếp nên trong hai số này sẽ có ,ột số chia hết cho 2
Suy ra 4a(a+1)chia hết cho 8
Bài 3 n^3-3n^2-n+3=n^2(n-3)-(n-3)
=(n-3)(n^2-1)
=(n-3)(n-1)(n+1)
Do n lẻ nên ta thay n=2k+1ta được (2k-2)2k(2k+2)=2(k-1)2k2(k+1)
=8(k-1)k(k+1)
vì k-1,k,k+1laf ba số nguyên liên tiếp mà tích của ba số nguyên liên tiếp chia hết cho 6
8.6=48 Vậy n^3-3n^2-n+3 chia hết cho 8 với n lẻ
Bài 4 n^5-5n^3+4n=n(n^4-5n^2+4)=n(n^1-1)(n^2-4)
=n(n+1)(n-1)(n-2)(n+2)là tích của 5 số nguyên liên tiếp
Trong 5 số nguyên liên tiếp có ít nhất hai số là bội của 2 trong đó có một số là bội của 4
một bội của 3 một bội của 5 do đó tích của 5 số nguyên liên tiếp chia hết cho 2.3.4.5=120
a, Vì n \(\in\)N => n2 là số chính phương
mà 9 = 32 là số chính phương
=> n2 + 9 là số chính phương.
Vậy A = n2 + 9 là số chính phương.
CHÚC BẠN HỌC TỐT!!!!
áp dụng hằng đẳng thức \(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)+3abc\)
=> A= (n+n+1+n+2)[n2 +(n+1)2 +(n+2)2 -n(n+1)-n(n+2)- (n+1)(n+2)] +3n(n+1)(n+2)
= (3n+3).3 +3n(n+1)(n+2) = 9n(n+1) + 3n(n+1)(n+2)
n(n+1)(n+2) là 3 số nguyên liên tiếp nên luôn tồn tại một số chia hết cho 3 => 3n(n+1)(n+2) chia hết cho 9
9n(n+10 chia hết cho 9
=> A chia hết cho 9
Xét hằng đẳng thức sau đây: x3 + y3 + z3 - 3xyz
<=> ( x + y )3 - 3xy( x + y ) + z3 - 3xyz
<=> [ ( x + y )3 + z3 ] - 3x2y - 3xy2 - 3xyz
<=> ( x + y + z )[ ( x + y )2 - ( x + y )z + z2 ] - 3xy ( x + y + z )
<=> ( x + y + z )( x2 + 2xy + y2 - zx - zy + z2 ) - 3xy ( x + y + z )
<=> ( x + y + z )( x2 + y2 - xy - zx - zy + z2 )
<=> x3 + y3 + z3 = ( x + y + z )( x2 + y2 - xy - zx - zy + z2 ) + 3xyz
Áp dụng hằng đẳng thức trên, ta có:
( n + n+ 1 + n + 2 )[ n2 + (n + 1 )2 - n( n+ 1 ) - (n+2)n - ( n + 1 )( n +2 ) + (n+2)2 ] + 3n( n + 1 )( n + 2 )
<=> ( 3n + 3 )( n2 + n2 + 2n + 1 - n2 - n - n2 - 2n - n2 - 2n - n - 2 + n2 + 4n +4 ) + 3n( n + 1 )( n + 2 )
<=> ( 3n + 3 )3 + 3n( n + 1 )( n + 2 )
<=> 9( n + 1 ) + 3n( n + 1 )( n + 2 )
Vì n( n + 1 )( n + 2 ) là 3 chữ số liên tiếp chia hết cho 6
=> 3n( n + 1 )( n + 2 ) = 3.6 = 18 chia hết cho 9
=> 9( n + 1 ) + 3n( n + 1 )( n + 2 ) chia hết cho 9
=> n3 + ( n + 1 )3 + ( n + 2 )3 chia hết cho 9 ( đpcm )
1
Gọi 3 số nguyên liên tiếp là n-1 , n . n+1
(n-1)3 +n3+(n+1)3
= n3 - 3n2+3n -1 + n3 + n3 +3n2 +3n +1
= 3n3 + 6n
= 3n3- 3n + 9n
= 3 (n3-n) + 9n chia hết cho 9
2)
Có a3+b3+c3 chia hết cho 9 (1)
Giả sử a,b,c đều ko chia hết cho 3 (BS3\(\pm1\))
\(\Rightarrow\) lập phương mỗi số dạng BS9 \(\pm1\)
\(\Rightarrow a^3+b^{3^{ }}+c^3=BS9+r_1+r_2+r_3\)
Có r1,r2,r3 \(\in\left(1;-1\right)\)
Không có cách nào để r1,r2,r3 nào để tổng chia hết cho 9 trái với (1)
Vậy tồn tại 1 trong 3 số a,b,c là bội của 3
\(n^3+\left(n+1\right)^3+\left(n+2\right)^3\)
\(=n^3+n^3+3n^2+3n+1+n^3+3n^2.2+3n.2^2+2^3\)
\(=3n^3+9n^2+15n+9=3\left(n^3+3n^2+5n+3\right)\)
\(=3\left(n^3+n^2+2n^2+2n+3n+3\right)\)
\(=3\left[n^2\left(n+1\right)+2n\left(n+1\right)+3\left(n+1\right)\right]\)
\(=3\left[\left(n+1\right)\left(n^2+2n\right)+3\left(n+1\right)\right]\)
\(=3n\left(n+1\right)\left(n+2\right)+9\left(n+1\right)\)
Vì n(n+1)(n+2) là tích 3 stn liên tiếp nên tích này chia hết cho 3
=>\(3n\left(n+1\right)\left(n+2\right)⋮9\) mà \(9\left(n+1\right)⋮9\)
=>\(n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\)
b: 9^2n có chữ số tận cùng là 1
=>9^2n+14 có chữ số tận cùng là 5
=>9^2n+14 chia hết cho 5
c: n(n^2+1)(n^2+4)
=n(n-2)(n-1)(n+1)(n+2)+10n^3
Vì n;n-2;n-1;n+1;n+2 là 5 số liên tiếp
nên n(n-2)(n-1)(n+1)(n+2) chia hết cho 5
=>n(n^2+1)(n^2+4) chia hết cho 5
\(A = n 3 + ( n + 1 ) 3 + ( n + 2 ) 3\)
\(= n 3 + n 3 + 3 n 2 + 3 n + 1 + n 3 + 6 n 2 + 12 n + 8\)
\(= 3 n 3 + 9 n 2 + 15 n + 9\)
\(= 3 n 2 ( n + 1 ) + 6 n ( n + 1 ) + 9 ( n + 1 )\)
\(= 3 ( n + 1 ) ( n 2 + 2 n + 3 )\)
\(= 3 ( n + 1 ) [ n ( n + 2 ) + 3 ]= 3 ( n + 1 ) [ n ( n + 2 ) + 3 ]\)
\(= 3 n ( n + 1 ) ( n + 2 ) + 9 ( n + 1 )\)
Do \(n , n + 1 , n + 2 \) là 3 số tự nhiên liên tiếp
\(⇒ 3 n ( n + 1 ) ( n + 2 ) ⋮ 9\)
\(⇒ A = 3 n ( n + 1 ) ( n + 2 ) + 9 ( n + 1 ) ⋮ 9 ( đ p c m )\)
P/s : Bài này bạn có thể sử dụng phương pháp quy nạp
làm như vậy sẽ nhanh hơn
tíc cho tui
Xét hằng đẳng thức sau:
x^3 + y^3 + z^3 - 3xyz
= (x + y)^3 - 3xy(x + y) + z^3 - 3xyz
= [(x + y)^3 + z^3] - 3xy(x + y + z)
= (x + y + z)[(x + y)^2 - z(x + y) + z^2) - 3xy(x + y + z)
= (x + y + z)(x^2 + y^2 + z^2 + 2xy - xz - yz) - 3xy(x + y + z)
= (x + y + z)(x^2 + y^2 + z^2 - xy - yz - xz)
---> x^3 + y^3 + z^3 = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - xz) + 3xyz
Áp dụng hằng đẳng thức trên, ta có:
n^3 + (n + 1)^3 + (n + 2)^3
= (n + n + 1 + n + 2)[ n^2 + (n + 1)^2 + (n + 2)^2 -n(n + 1) - (n + 1)(n + 2) - n(n + 2)] - 3n(n + 1)(n + 2)
= (3n + 3)(n^2 + n^2 + 2n + 1 + n^2 + 4n + 4 - n^2 - n - n^2 - 3n - 2 - n^2 - 2n) - 3n(n + 1)(n + 2)
= 9(n + 1) - 3n(n + 1)(n + 2)
Vì n(n + 1)(n + 2) là tích 3 số nguyên liên tiếp nên chia hết 6
--> 3n(n + 1)(n + 2) chia hết 3.6 = 18 chia hết 9
--> 9(n + 1) - 3n(n + 1)(n + 2) chia hết 9
--> n^3 + (n + 1)^3 + (n + 2)^3 chia hết cho 9