\(n+1\)và\(3n+4\)là hai số nguyên tố cùng nhau.
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2017

Gọi UCLN(n+1,3n+4) là d

Ta có: \(\hept{\begin{cases}n+1⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow}\left(3n+4\right)-\left(3n+3\right)⋮d}\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy n+1 và 3n+4 nguyên tố cùng nhau

27 tháng 10 2017

Gọi d là ƯCLN(n+1;3n+4)

Ta có:

\(n+1⋮d\)

\(3n+4⋮d\)

\(\Rightarrow n+1⋮d\Rightarrow3\left(n+1\right)⋮d\Rightarrow3n+3⋮d\)

Vậy \(\left(3n+4\right)-\left(3n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

Vậy 2 số đó là hai số nguyên tố cùng nhau.

18 tháng 5 2017

Gọi \(d=ƯCLN\left(n+1;3n+4\right)\) (\(d\in N\)*)

\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\3n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3n+3⋮d\\3n+4⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\)

\(d\in N\)*; \(1⋮d\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n+1;3n+4\right)=1\)

\(\Rightarrow n+1;3n+4\) nguyên tố cùng nhau với mọi n

9 tháng 11 2018

Đặt (9n+24, 2n+4) =d 

=> 9n+24 chia hết cho d => 18n +48 chia hết cho d

2n +4 chia hết cho d => 18n +36 chia hết cho d

=> 12 chia hết cho d 

=> d thuộc {1, 2, 3, 4, 6, 12} 

Để 9n +24 và 2n +4 là hai số nguyên tố cùng nhau  => d=1 => d không chia hết cho 2 và d không chia hết cho 3 

+) d không chia hết cho 2 

=> 9n +24 không chia hết cho 2=> 9n không chia hết cho 2=> n không chia hết cho 2 => n=2k+1, k thuộc Z

+) d không chia hết cho 3

=> 2n+4 không chia  hết cho 3 => 2(n+2) không chia hết cho 3 => n+2 không chia hết cho 3 => n-1 không chia hết cho 3 => n khác 3h+1, h thuộc Z

Em làm tiếp nhé!

20 tháng 11 2018

đặt ( 9n + 24 , 2n + 4 ) = d

=> 9n + 24 chia hết cho d => 18n + 48 chia hết cho d

2n + 4 chia hết cho d => 18n + 36 chia hết cho d

=> 12 chia hết cho d

=> d thuộc { 1,2,3,4,6,12}

để 9n + 24 và 2n + 4 là 2 số nguyên tố cùng nhau => d = 1 => d không chia hết cho 2 và d không chia  hết cho 3

+, d không chia hết cho 2

=> 9n + 24 không chia hết cho 2 => 9n không chia hết cho 2 => n không chia hết cho 2 => n = 2k + 1 , k thuộc Z

+, d không chia hết cho 3 

=> 2n + 4 không chia hết cho 3 => 2 (n + 2 ) không chia hết cho 3 => n + 2 không chia hết cho 3 => n - 1 không chia hết cho 3 => n khác 3h + 1 , h thuộc Z

còn lại bn tuej lm nhé

25 tháng 11 2017

Gọi d là ƯCLN của 2n+1 và 3n+1 

Ta có:\(2n+1⋮d\Rightarrow3\left(2n+1\right)=6n+3⋮d\)

\(3n+1⋮d\Rightarrow2\left(3n+1\right)=6n+2⋮d\)

\(\Rightarrow\left(6n+3\right)+\left(6n+2\right)=1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\)

Vậy 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau

25 tháng 11 2017

Vào đây nha share.net%2Fboiduongtoanlop6%2Fhai-s-nguyn-t-cng-nhau-ton-lp-6-51528658&usg=AOvVaw2-F1NrwqLYt_pBX-S_389C.

23 tháng 11 2016

Gọi ƯCLN(3n+1 ; 4n +1 ) là d

\(\begin{cases}3n+1⋮d\\4n+1⋮d\end{cases}\)

=> 4 ( 3n + 1) - 3 ( 4n + 1 ) ⋮ d

=> 1 ⋮ d

=> d = 1

Vậy .......

23 tháng 11 2016

BT 18:Chứng minh hai số sau là hai số nguyên tố cùng nhau:

1) 3n + 1 và 4n + 1 với n ∈ N

Gọi d là (3n + 1, 4n+1)

=) 3n+1 chia hết cho d

=) 4n+1 chia hết cho d

Vì 3n+1 là số lẻ mà d là ước của 3n+1 =) d là số lẻ

Ta có: 4(3n+1) - 3(4n+1)

= 12n + 4 - 12n+3

= 1

hay d chia hết cho 1 =) d =1 (đpcm)

do đó : (3n + 1, 4n+1) = 1

23 tháng 11 2016

Gọi ƯCLN(3n+1 ; 5n + 2 ) là d

=> \(\begin{cases}3n+2⋮d\\5n+2⋮d\end{cases}\)

=> 5 ( 3n + 2 ) - 3 ( 5n + 2 ) ⋮ d

=> 2 ⋮ d

Mà chưa xác định được n chẵn hay lẻ

=> Đề sai

23 tháng 11 2016

Nhầm nha, Đề sai ồi,... Đề đúng:

3n + 2 và 5n + 3 với n N

17 tháng 4 2017

\(A=\frac{n\left(n+1\right)}{2};B=2n+1\\ \)

gọi d là ước lớn nhất của A và B

ta có

\(8A-B^2=4n^2+4n-\left(4n^2+4n+1\right)=1\)

Vậy \(d=+-1\) => A,B có ước lớn nhất là 1 =>dpcm 

5 tháng 5 2017

mình k hiểu cho lắm dong thứ 2