\(^{n^2+n+2}\) không chia hết cho 6

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2022

A = n2 + n + 2 

giả sử A chia hết cho 6  (phương pháp phản chứng , giả sử điều gì đó là đúng dẫn đến điều khác là đúng nhưng điều khác không bao giờ đúng dẫn đến điều giả sử là sai gọi là phản chứng )

     giả sử A ⋮ 6 ⇔ A ⋮ 3 ⇔ n2 + n + 2 ⋮ 3  ⇔ n2 + n : 3 dư 1 

nếu n ⋮ 3 ⇔ n2 + n  ⋮ 3 (vô lý)

nếu n chia 3 dư 1 ⇔ n2 : 3 dư 1 (một số chính phương chia 3 chỉ có thể dư 1 hoặc không dư )

⇔ n2 + n : 3 dư 2 (vô lý)

nếu n : 3 dư 2 ⇔ n2 : 3 dư 1 ( 1 số chính phương chia cho 3 chỉ có thể dư 1 hoặc không dư)

⇔ n2 + n ⋮ 3 (vô lý)

vậy n2 + n + 2 không chia hết cho 6 

                

27 tháng 11 2016

Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)

=b(a−1)a(a+1)−a(b−1)b(b+1)

Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6

=> b(a−1)a(a+1);a(b−1)b(b+1)6a3bab36a3b−ab36

 

27 tháng 11 2016

mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha

1: Vì 7 là số nguyên tố nên \(n^7-n⋮7\)

2: \(A=n^3+11n\)

\(=n^3-n+12n\)

\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)

3: \(=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\)

6 tháng 6 2017

a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\)\(5⋮5\) (1)

\(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)

Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)

b, \(n^3\left(n^2-7\right)-36n\)

\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)

\(=n\left[\left(n^3-7n\right)^2-36\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)

6 tháng 6 2017

Bn Mai Xuân Phong ơi!Câu a, 5x3hay là 5n3 vậy?

8 tháng 10 2019

a,(2n+4).2=4(n+2) chia hwtc ho 8

8 tháng 10 2019

a) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right)4\)

\(=2\left(n+1\right).4\)

\(=8\left(n+1\right)⋮8\) 

=> đpcm

30 tháng 8 2019

1) \(n\left(n-1\right)\left(n-2\right)\)là tích của 3 số nguyên liên tiếp nên

\(\hept{\begin{cases}n\left(n-1\right)\left(n-2\right)⋮2\\n\left(n-1\right)\left(n-2\right)⋮3\end{cases}\left(1\right)}\)

Mà \(\left(2,3\right)=1\left(2\right)\)

từ (1) và (2) \(\Rightarrow n\left(n-1\right)\left(n-2\right)⋮6\left(đpcm\right)\)

30 tháng 8 2019

2) \(n^4-n^2\)

\(=n^2\left(n^2-1\right)\)

\(=n^2\left(n-1\right)\left(n+1\right)\)

TH1: n lẻ thì \(n-1\)và n+1 là 2 số nguyên chẵn liên tiếp 

\(\Rightarrow\left(n-1\right)\left(n+1\right)⋮4\)

\(\Rightarrow n^2\left(n-1\right)\left(n+1\right)⋮4\)

TH2: Với n chẵn thì \(n⋮2\)\(\Rightarrow n^2⋮4\)

\(\Rightarrow n^2\left(n-1\right)\left(n+1\right)⋮4\)

Vậy \(n^4-n^2⋮4\left(đpcm\right)\)

30 tháng 4 2020

Ta có công thức quen thuộc: \(B=1+2+3+....+n=\frac{n\left(n+1\right)}{2}\)

Lại có: \(2A=\left(n^5+1\right)+\left[\left(n-1\right)^5+2^5\right]+\left[\left(n-2\right)^5+3^5\right]+....+\left(1+n^5\right)\)

Nhận thấy mỗi số hạng đều chia hết cho n+1 nên \(2A⋮n+1\left(1\right)\)

Lại có 2A-2n5=\(\left[\left(n-1\right)^5+1^5\right]+\left[\left(n-2\right)^2+2^5\right]+....\)chia hết cho n

Do 2n5 nên 2A chia hết cho n (2)

Từ (1) (2) => 2A chia hết cho n(n+1) do đó: 2A chia hết cho 2B => A chia hết cho B (đpcm)

AH
Akai Haruma
Giáo viên
5 tháng 10 2017

Lời giải:

a)

\(A=11^{n+2}+12^{2n+1}\)

Ta thấy \(12^2\equiv 11\pmod {133}\Rightarrow 12^{2n+1}\equiv 11^n.12\pmod {133}\)

Do đó \(A=11^{n+2}+12^{2n+1}\equiv 11^{n+2}+11^n.12\pmod {133}\)

\(\Leftrightarrow A\equiv 11^n(11^2+12)\equiv 11^n.133\equiv 0\pmod {133}\)

Vậy \(A\vdots 133\) (đpcm)

b) Đề bài không rõ

c)

Ta thấy: \(5^{2}=25\equiv 6\pmod {19}\)

\(\Rightarrow 7.5^{2n}\equiv 7.6^n\pmod {19}\)

\(\Rightarrow 7.5^{2n}+12.6^n\equiv 7.6^n+12.6^n\equiv 19.6^n\equiv 0\pmod {19}\)

Vậy \(7.5^{2n}+12.6^n\vdots 19\) (đpcm)

a: \(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\cdot n\cdot\left(n+1\right)\left(n^2+1\right)\)

Vì n-1;n;n+1 là ba số nguyên liên tiếp

nên \(\left(n-1\right)\left(n+1\right)\cdot n⋮3!\)

=>\(A⋮6\)(1)

Vì 5 là số nguyên tố nên \(n^5-n⋮5\)(Định lí Fermat nhỏ)

hay \(A⋮5\)(2)

Từ (1)và (2) suy ra \(A⋮30\)

b: Vì 7 là số nguyên tố nên \(a^7-a⋮7\)(Định lí Fermat nhỏ)

8 tháng 8 2016

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

8 tháng 8 2016

ai giải giúp mình bài 2 và bài 3 với