Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : Số số hạng của dãy số D chính là khoảng cách từ 1-->100 , mỗi số cách nhau 1 đơn vị .
=> Số số hạng của dãy số D là : \(\frac{100-1}{1}+1=100\) ( số hạng )
Vậy ta có số nhóm là : 100 : 2 = 50 ( nhóm )
\(D=\left(6+6^2\right)+\left(6^3+6^4\right)+...+\left(6^{99}+6^{100}\right)\)
\(D=\left(6+6^2\right)+6^2\left(6+6^2\right)+...+6^{98}\left(6+6^2\right)\)
\(D=1.42+6^2.42+...+6^{98}.42\)
\(D=\left(1+6^2+...+6^{98}\right).42\)
Vì : 42 = 6 . 7 . Mà : \(1+6^2+...+6^{98}\in N\) \(\Rightarrow D⋮7\)
Vậy : \(D⋮7\)
b, \(E=3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}\)
\(E=3^n.3^3+2^n.2^3+3^n.3+2^n.2^2\)
\(E=3^n.3^3+3^n.3+2^n.2^3+2^n.2^2\)
\(E=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)
\(E=3^n.30+2^n.12\)
\(E=3^n.5.6+2^n.2.6\)
\(E=\left(3^n.5+2^n.2\right).6\)
Mà : \(3^n.5+2^n.2\in N\Rightarrow E⋮6\)
Vậy : \(E⋮6\)
a)D=6+62+63+...+699+6100
D=(6+62)+(63+64)+...+(699+6100)
D=42.1+62..42+...+698.42
D=42.(1+62+...+698)\(⋮\)7
\(\Rightarrow\)D\(⋮\)7
Ta có: 3n+3+3n+1+2n+3+2n+2
=3n.33+3n.3+2n.23+2n.22
=3n.27+3n.3+2n.8+2n.4
=(3n.27+3n.3)+(2n.8+2n.4)
=3n.(27+3)+2n.(8+2)
=3n.30+2n.12
=3n.5.6+2n.2.6
=(3n.5+2n.2).6 chia hết cho 6
=>3n+3+3n+1+2n+3+2n+2 chia hết cho 6
=>ĐPCM
3n+3+3n+1+2n+3+2n+2
=3n+1(32+1)+2n+2(2+1)
=3n+1.10 +2n+2.3
Do 3n+1 chia hết cho 3
10 chia hết cho 2
=>3n+1.10 chia hết cho 6(1)
2n+2 chia hết cho 2
3 chia hết cho 3
=>2n+2.3 chia hết cho 6(2)
Từ 1 và 2 =>3n+1.10 +2n+2.3 chia hết cho 6=>đpcm
Câu 1: ta có:
\(4C=4^2+4^3+...+4^n+4^{n+1}\)lấy 4C-C ta có:\(3C=4^{n+1}-4\)
=> C=\(\frac{4^{n+1}-4}{3}\)
b, tương tự ta có: \(5D=5+5^2+...+5^{2000}+5^{2001}\)
=> D=\(\frac{5^{2001}-1}{4}\)
Câu 2: ta có: \(2A=2+2^2+2^3+...+2^{200}+2^{201}\)
=> Lấy 2A - A, ta có: \(A=2^{201}-1\)=> A+1=2201 -1+1=2201 .
Vậy \(A+1=2^{201}\)
Câu 3: Ta có: \(3B=3^2+3^3+3^4+...+3^{2005}+3^{2006}\)
=> \(B=\frac{3^{2006}-3}{2}\)=> \(2B+3=3^{2006}-3+3=3^{2006}\)
Vậy 2B + 3 là một lũy thừa của 3...
Câu 4: Do 4=22nên ta có: \(2C=2^3+2^3+2^4+...+2^{2005}+2^{2006}\)
=> \(C=2^{2006}+2^3-\left(2^2+4\right)\)=>\(C=2^{2006}\)
Vậy C là lũy thừa của 2 có số mũ là 2006
Câu 5: a, Do 3n+2 chia hết cho n-1 hay:
3n-3+5 sẽ chia hết cho n-1 =>3(n-1) +5 chia hết cho n-1...mà 3(n-1) chia hết cho n-1 nên 5 chia hết n-1;
=> n-1 thuộc (1,5,-1,-5);;; nên n tương ứng với(2;6;0;-4)
b ,Do n+6 chia hết cho n nên 6 chia hết cho n hay n là ước của 6
nên => n thuộc (1,6,-1,-6);
c, Do 3n+4 chia hết cho n-1 hay: 3n-3+7 chia hết cho n-1
=> 3(n-1)+7 chia hết cho n-1 => 7 chia hết cho n-1;
n -1 thuộc (1,7,-1,-7) hay n sẽ tương ứng với( 2,8,0,-6);
d, Do n+5 chia hết cho n+1 hay n+1+4 chia hết cho n+1
=> 4 chia hết cho n+1 => n+1 thuộc (1,4,-1,-4) nên n tương ứng với (0,3,-2,-5);