\(m^4-n^4\))\(⋮\)30(m,n
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow2^5>2^n>2^2\)

=>2<n<5

hay \(n\in\left\{3;4\right\}\)

b: \(\Leftrightarrow3^5< =3^n< =3^5\)

=>n=5

Ta có:

\(M=3^{n+2}-2^{n+4}+3^n+2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+4}-2^n\right)=3^n\left(3^2+1\right)-2^n\left(2^4-1\right)=3^n.10-2^n.15\)Đến đây thì n=0 sẽ không thỏa mãn, nên đề thiếu bạn nhé!

ĐK: n∈N*

Vì n∈N* nên \(M=3^n.10-2^n.15=3^{n-1}.3.10-2^{n-1}.2.15=3^{n-1}.30-2^{n-1}.30=30.\left(3^{n-1}-2^{n-1}\right)⋮30\left(đpcm\right)\)Vậy với mọi n∈N* thì \(M=3^{n+2}-2^{n+4}+3^n+2^n⋮30\)

13 tháng 2 2020

Cậu lấy 10 , 15 ở đâu vậy ạ ? 32 = 9 , 24 = 16 ??

22 tháng 12 2017

So sánh \(\frac{m}{n}\) và \(\frac{m+1}{n+1}\) với m, n ∈Z và m > n > 0

Giải:Ta có:\(\frac{m+1}{n+1}-\frac{m}{n}=\frac{n\left(m+1\right)-m\left(n+1\right)}{n\left(n+1\right)}\)

\(=\frac{nm+n-mn-m}{n\left(n+1\right)}=\frac{n-m}{n\left(n+1\right)}< 0\)

\(\Rightarrow\frac{m+1}{n+1}< \frac{m}{n}\)

Vậy........................

22 tháng 12 2017

m/n lớn hơn.

22 tháng 12 2017

Ta xét:

\(m\left(n+1\right)=mn+m\) (1)

\(n\left(m+1\right)=nm+n\) (2)

\(mn=nm\)\(m>n\) (theo đề ra)

Nên từ (1) và (2) suy ra \(mn+m>nm+n\)

\(\Rightarrow\dfrac{m}{n}>\dfrac{m+1}{n+1}\)

a) \(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)

\(\Rightarrow2^n\cdot\left(2^{-1}+4\right)=9\cdot2^5\)

\(\Rightarrow2^n\cdot4,5=288\)

\(\Rightarrow2^n=64\)

\(\Rightarrow n=6\)

b) \(2^m-2^n=1984\)

\(\Rightarrow2^n\cdot\left(2^{m-n}-1\right)=2^6\cdot31\)

\(\Rightarrow\left\{{}\begin{matrix}2^n=2^6\\2^{m-n}-1=31\end{matrix}\right.\)

\(\Rightarrow n=6\)

\(\Rightarrow2^{m-n}=32\Rightarrow m-n=5\Rightarrow m=11\)

12 tháng 2 2018

Olm giúp em với 

30 tháng 4 2019

còn on ko vậy mình giúp cho