Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+)Nếu x < 2017 => x - 2018 = -1 => \(\left|x-2018\right|\)> 1
=> \(\left|x-2018\right|^{2018}\) >1
=> x < 2017 ko thỏa mãn
+) Nếu x = 2017 => x - 2018 = -1 => \(\left|x-2018\right|\) = 1
=> \(\left|x-2018\right|^{2018}=1\)
=> | x − 2017 | 2017 + | x − 2018 | 2018 = 1
=> x = 2017(TM)
+) Nếu 2017< x < 2018
=> 0 < x - 2017 < 1 và 2018 - x < 1
=>| x − 2017 | 2017 + | x − 2018 | 2018 < | x − 2017 |
+) |2018- x| ≤ | x-2017+2018-x| = 1
=> | x − 2017 | 2017 + | x − 2018 | 2018 < 1
=> 2017 < x < 2019 ko thỏa mãn
+) Nếu x = 2018 => x - 2017 = 1 và x - 2018 = 0
=>| x − 2017 | 2017 + | x − 2018 | 2018 = 1
=> x = 2018 thỏa mãn
+) Nếu x > 2018 => x - 2017 > 1
=> | x − 2017 | 2017 > 1
=>| x − 2017 | 2017 + | x − 2018 | 2018 > 1
=> x > 2018 ko thỏa mãn
Vậy x = 2018 là nghiệm của pt
x = 2017 là nghiệm của pt
Dễ thấy \(x=2017\)không là nghiệm của phương trình.
Ta có:
\(\frac{1+\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)^2}{1-\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)}=\frac{13}{37}\)
Đặt \(\frac{x-2018}{2017-x}=a\)
\(\Rightarrow\frac{1+a+a^2}{1-a+a^2}=\frac{13}{37}\)
\(\Leftrightarrow24a^2+50a+24=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{3}{4}\\a=-\frac{4}{3}\end{cases}}\)
Đặt \(2017=a\)
=>\(2018=a+1\)
Với mọi \(a\in N\) có:\(\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}=\sqrt{\frac{\left(a+1\right)^2+a^2\left(a+1\right)^2+a^2}{\left(a+1\right)^2}}=\sqrt{\frac{a^2+2a+1+a^2\left(a^2+2a+1\right)+a^2}{\left(a+1\right)^2}}=\sqrt{\frac{2a^2+2a+1+a^4+2a^3+a^2}{\left(a+1\right)^2}}=\sqrt{\frac{\left(a^4+2a^2+1\right)+2a\left(a^2+1\right)+a^2}{\left(a+1\right)^2}}\)
=\(\sqrt{\frac{\left(a^2+1\right)^2+2a\left(a^2+1\right)+a^2}{\left(a+1\right)^2}}=\sqrt{\frac{\left(a^2+a+1\right)}{\left(a+1\right)^2}}=\left|\frac{a^2+a+1}{a+1}\right|\)(do \(a\ge0\))
=\(\frac{a\left(a+1\right)+1}{a+1}=a+\frac{1}{a+1}\)
=> \(\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}=a+\frac{1}{a+1}\)
Thay a=2017 có:
\(\sqrt{1+2017^2+\left(\frac{2017}{2018}\right)^2}=2017+\frac{1}{2017+1}=2017+\frac{1}{2018}\)
=>\(\sqrt{1+22017^2+\left(\frac{2017}{2018}\right)^2}+\frac{2017}{2018}=2017+\frac{1}{2018}+\frac{2017}{2018}\)
<=> M=2017+1=2018
Vậy M=2018
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\Rightarrow\left(a+b+c\right)\left(ab+ac+bc\right)-abc=0\Rightarrow\left(a+b\right)\left(ab+ac+bc\right)+abc+ac^2+bc^2-abc=0\Rightarrow\left(a+b\right)\left(ab+ac+bc\right)+c^2\left(a+b\right)=0\Rightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\Rightarrow\left[{}\begin{matrix}a+b=0\\a+c=0\\b+c=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=-b\\c=-a\\b=-c\end{matrix}\right.\)TH1: nếu a=-b
P=(a2017+b2017)(b2018-c2018)=(-b2017+b2017)(b2018-c2018)=0
TH2: nếu b=-c
P=(a2017+b2017)(b2018-c2018)=(a2017+b2017)((-c)2018-c2018)=0
Còn một TH nữa thì bạn ghi thiếu đề rồi
A= \(a^{2017}\left(a^2-8a+11\right)+b^{2017}\left(b^2-8b+11\right)=\)\(a^{2017}\left(a^2-8a+16-5\right)+b^{2017}\left(b^2-8b+16-5\right)=\)\(a^{2017}\left(\left(a-4\right)^2-\sqrt{5^2}\right)+b^{2017}\left(\left(b-4\right)^2-\sqrt{5^2}\right)\)=\(a^{2017}\left(a-4-\sqrt{5}\right)\left(a-4+\sqrt{5}\right)+b^{2017}\left(b-4-\sqrt{5}\right)\left(b-4+\sqrt{5}\right)\)= 0+0= 0
Có: \(\left(2018^{2018}+2017^{2018}\right)^{2017}< \left(2018^{2017}.2018+2017^{2017}.2018\right)^{2017}\)
\(=\left(2018^{2017}+2017^{2017}\right)^{2017}.2018^{2017}< \left(2018^{2017}+2017^{2017}\right)^{2017}.\left(2018^{2017}+2017^{2017}\right)\)
\(=\left(2018^{2017}+2017^{2017}\right)^{2018}\)