\(\left(10^n+18^n-28\right)⋮27\) \(\left(n\in N\right)\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2019

Gọi số cần tìm là n 

Theo đề bài ta có:

n=8a+7

n=31b+28

Với a,b nguyên dương

31b+28=8a+7\Leftrightarrow 8a=31b+21\Leftrightarrow a=\frac{31b+21}{8}

Mà do là số có 3 chữ số nên ta có:

100<n<999\Leftrightarrow \left\{\begin{matrix} 100<8a+7<999\\ 100<31b+28< 999\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 11,6<a<124\\ 2,33<b<31,32 \end{matrix}\right.

Do là số lớn nhất có 3 chữ số nên ta thử giá trị b từ 31 giảm dần nhận giá trị nào đầu tiên thì ta được b=29 thoả mãn

Vậy n=31b+28=31.29+28=927

31 tháng 12 2019

Xin lỗi , mình nhầm địa chỉ

16 tháng 11 2017

Bài đầu đơn giản rồi , tự tính nhé <3

Bài 2

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.3^2-2^n.2^2+3^n-2^n\)

\(=\left(3^n.3^2+1\right)-\left(2^n.2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)⋮10\)

Vậy.....

20 tháng 6 2017

Gọi a là phần nguyên của x, r là phần lẻ của x (a thuộc Z, n thuộc Q và 0 < n < 1)

=> x = a + r ; [x] = a

Ta có: 

[n+x] = [n+a+r] = n +a ( do 0 < r <1)

Mà n + [x] = n+ a

=> [n+x] = n + [x]

Đúng nhớ cảm ơn mình nhé

15 tháng 5 2015

Xét n trong các trường hợp sau:

+) n = 4k (k \(\in\) N) => VT = \(\left[\frac{4k+3}{4}\right]+\left[\frac{4k+5}{4}\right]+\left[\frac{4k}{2}\right]=\left[k+0,75\right]+\left[k+1,25\right]+\left[2k\right]\)

\(=k+\left(k+1\right)+2k=4k+1=n+1\)= VP

+) n = 4k + 1 (k \(\in\) N) => VT = \(\left[\frac{4k+4}{4}\right]+\left[\frac{4k+6}{4}\right]+\left[\frac{4k+1}{2}\right]=\left[k+1\right]+\left[k+1,5\right]+\left[2k+0,5\right]\)

\(=\left(k+1\right)+\left(k+1\right)+2k=4k+2=n+1\)= VP

+) n = 4k + 2 (k \(\in\) N)   => VT= \(\left[\frac{4k+5}{4}\right]+\left[\frac{4k+7}{4}\right]+\left[\frac{4k+2}{2}\right]=\left[k+1,25\right]+\left[k+1,75\right]+\left[2k+1\right]\)

\(=\left(k+1\right)+\left(k+1\right)+\left(2k+1\right)=4k+3=n+1\)= VP

+) n = 4k + 3 (k \(\in\) N)  => VT = \(\left[\frac{4k+6}{4}\right]+\left[\frac{4k+8}{4}\right]+\left[\frac{4k+3}{2}\right]=\left[k+1,5\right]+\left[k+2\right]+\left[2k+1,5\right]\)

\(=\left(k+1\right)+\left(k+2\right)+\left(2k+1\right)=4k+4=n+1\)= VP

Từ các trường hợp trên => đpcm

 

\(\frac{n+3}{4}+\frac{n+5}{4}+\frac{n}{2}=\frac{n+3}{4}+\frac{n+5}{4}+\frac{2n}{4}=\frac{n+3+n+5+2n}{4}=\frac{4n+8}{4}=n+2\)

??? Cái gì đây, đây là câu hỏi hay câu trả lời ???

4 tháng 11 2019

rảnh ghê ta