Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^2+2002=k^2\Leftrightarrow2002=k^2-n^2=\left(k-n\right).\left(k+n\right)\)
ta thấy k-n và k+n cùng tính chẵn lẻ
Mà 2002 chẵn => (k-n).(k+n) đều chẵn khi đó (k-n).(k+n) chia hết cho 2
mà 2002=2.7.11.13
Vậy không tồn tại n thuộc N để n2+2002 là SCP
p/s: có cách ngắn hơn làm với ạ :) + t ko rõ đúng hay sai =,='
đẻ n2+ 2002 là số chính phương
=> n2+2002= a2 (a lá số tự nhiên khác 0)
=>a2-n2=2002
=> (a-n)(a+n)=2002
do 2002 chia hết cho 2 suy ra a-n hoặc a+n chia hết cho 2 mà a-n-(a+n)=-2n chia hết cho 2
=>a-n và a+n cùng tính chẵn lẻ => a-n,a+n chia hết cho 2
=> (a-n)(a+ n) chia hết cho 4 mà 2002 chia hết cho 4
điều này là vô lí
hok tốt
kt
n2 chỉ có thể có các chữ số tận cùng là 0,1,4,5,6,9
Nên n2 + 2002 có các chữ số tận cùng lần lượt là 2;3;8;7;8;3
Mà số có tận cùng là các chữ số 2,3,7,8 ko là số chính phương.
Do đó: n2 + 2002 không là số chính phương với mọi n là STN.
để n^2 +2002 là số chính phương
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0)
=> a^2 -n^2 =2002
=> (a-n)(a+n) =2002
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2
mà a-n -(a+n) =-2n chia hết cho 2
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4
=> vô lý
n2 chỉ có thể có các chữ số tận cùng là 0,1,4,5,6,9
Nên n2 + 2002 có các chữ số tận cùng lần lượt là 2;3;8;7;8;3
Mà số có tận cùng là các chữ số 2,3,7,8 ko là số chính phương.
Do đó: n2 + 2002 không là số chính phương với mọi n là STN.
giả sử n2 + 2002 = a2
nếu a và n không cùng tính chẵn lẻ
a2 - n2 là số lẻ
mà 2002 là số chẵn
nên nếu a và n không cùng tính chẵn lẻ thì n2 +2002 ko phải là 1 số chính phương
nếu a và n cùng tính chẵn lẻ thì a và n khác 2002 ( vì 2002 không chia hết cho 4 mà a2 - n2 chia hết cho 4 )
vậy ko có số nào thích hợp
Gọi số cần tìm là a
ta có n^2+2002=a^2
a^2-n^2=2002
(a-n)(a+n)=2002
do 2002 chia hết cho 2=>a-n hoặc a+n cũng phải chia hết cho 2
mà a-n-(a+n)=-2n chia hết cho 2
=>a-n và a+n là cặp chẵn lẻ=>a-n hay a+n đều chia hết cho 2
mà 2 số đều chia hết cho 2 thì tích của chúng sẽ chia hết cho 4
=>(a-n)(a+n) chia hết cho 4
mà 2002 ko chia hết cho 4
=>ko có số thự nhiên nào để n^2 +2002 là số chính phương
dùng phương pháp phản chứng nhé
đặt \(n^2+2002=a^2\)
=> \(a^2-n^2=2002\)
<=> (a+n)(a-n) =2002
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2
mà a-n -(a+n) =-2n chia hết cho 2
=> a-n và a+n cùng tính chẵn lẻ => a-n ,a+n đều chia hết cho 2
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 (vô lý)
=> đpcm
Giả sử \(n^2+2002\) là một số chính phương, suy ra \(n^2+2002=m^2\) với \(n,m\in Z\)
\(\Leftrightarrow\left(m+n\right)\left(m-n\right)=2002,\) suy ra m + n và m - n là 2 số chẵn
\(\Rightarrow\left(m+n\right)\left(m-n\right)⋮4\) mà \(2004⋮̸4\) vô lí
Vậy không tồn tại số nguyên n để \(n^2+2002\) là 1 số chính phương
câu này hay đấy bạn:
n2+2002 là số chính phương thì n2+2002=a2(a là số tự nhiên khác 0)
⇒a2−n2=2002⇒(a−n)(a+n)=2002
Do 2002⋮2⇒(a−n)(a+n)⋮2hay a−n⋮2hoặc a+n⋮2hoặc a-n và a+n đều⋮2
mà a-n-(a+n)=-2n ⋮2⇒a-n và a+n cùng chẵn hoặc lẻ ⇒ a-n; a+n đều ⋮2⇒(a−n)(a+n)⋮4
Mà 2002 ko chia hết cho 4