Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A(x) = 5x3 + 4x2 + 7 - 5x3 + x2 - 2
= 5x2 + 5
Ta có : \(x^2\ge0\forall x\Rightarrow5x^2\ge0\Rightarrow5x^2+5\ge5>0\forall x\)
=> A(x) luôn dương với mọi x
B(x) = -5x2 + 3x + 7 + 4x2 - 3x - 9
= -x2 - 2
Ta có : \(x^2\ge0\forall x\Rightarrow-x^2\le0\Rightarrow-x^2-2\le-2< 0\forall x\)
=> B(x) luôn âm với mọi x
\(A\left(x\right)=\left(5x^3-5x^3\right)+\left(4x^2+x^2\right)+\left(7-2\right)=5x^2+5>0\)
\(B\left(x\right)=\left(-5x^2+4x^2\right)+\left(3x-3x\right)+\left(7-9\right)=-x^2-2< 0\)
mấy bn xem mk giải thử chứ mk ko bít đúng ko luôn !!! hjhj
ta có: 0,7x4+0,2x2-5+0,3x4-1/5x2+8
= 0,7x4+0,3x4+0,2x2-1/5x2 -5+8
= x4+3 lớn hơn hoặc bằng 3 >0 vì x4 lớn hơn hoặc bằng 0 với x E R
xem rùi cho ý kiến đừng nói này nói nọ !!!!
duyệt đi
1. Ta có \(|3x-1|=\frac{1}{2}\)
\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)
Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha
Sai thì thôi nha bn mik cx chưa lm dạng này bh
Câu 1:
\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)
\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)
\(=x^2+9x+1\)
Ta có: \(\left|3x-1\right|=\frac{1}{2}\)
TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)
\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)
TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)
\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)
\(A-B=\left(1+\dfrac{3}{4}-\dfrac{3}{4}\right)x^4+\left(-\dfrac{1}{8}x^3+\dfrac{1}{8}x^3\right)+\left(-\dfrac{5}{4}+\dfrac{9}{4}\right)x^2+\left(\dfrac{2}{5}x-\dfrac{2}{5}x\right)+\dfrac{4}{7}+\dfrac{3}{7}\)
\(=x^4+x^2+1>0\forall x\)