K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2015

* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. 
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. 
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy 
nên: 
{ góc uOz = 1/2 góc xOz 
{ góc zOv = 1/2 góc zOy 
Suy ra: 
{ 2 góc uOz = góc xOz 
{ 2 góc zOv = góc zOy 
Ta lại có: 
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) 
=> 2 góc uOz + 2 góc zOv = 180 độ 
=> 2(góc uOz + góc zOv) = 180 độ 
=> góc uOz + góc zOv = 90 độ 
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) 
=> Tia Ou vuông góc Tia Ov 
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.

13 tháng 9 2015

copy ở đây nè : https://vn.answers.yahoo.com/question/index?qid=20110511184631AAIJ712

21 tháng 10 2018

Cái này trong sách lớp 7 có chứng minh rồi nha bạn! Hình như là bài định lý thì phải

Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. 
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. 
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy 
nên: 
{ góc uOz = 1/2 góc xOz 
{ góc zOv = 1/2 góc zOy 
Suy ra: 
{ 2 góc uOz = góc xOz 
{ 2 góc zOv = góc zOy 
Ta lại có: 
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) 
=> 2 góc uOz + 2 góc zOv = 180 độ 
=> 2(góc uOz + góc zOv) = 180 độ 
=> góc uOz + góc zOv = 90 độ 
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) 
=> Tia Ou vuông góc Tia Ov 
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau

2 tháng 7 2019

x y O A B

30 tháng 4 2018

Chọn đáp án D

6 tháng 7 2017

(A)sai

(B)sai

(C)sai

(D)đúng

9 tháng 10 2017

D

21 tháng 11 2018

Chọn C

13 tháng 9 2015

* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. 
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. 
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy 
nên: 
{ góc uOz = 1/2 góc xOz 
{ góc zOv = 1/2 góc zOy 
Suy ra: 
{ 2 góc uOz = góc xOz 
{ 2 góc zOv = góc zOy 
Ta lại có: 
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) 
=> 2 góc uOz + 2 góc zOv = 180 độ 
=> 2(góc uOz + góc zOv) = 180 độ 
=> góc uOz + góc zOv = 90 độ 
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) 
=> Tia Ou vuông góc Tia Ov 
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.

13 tháng 9 2015

cho: xOy và yOz là 2 góc kề bù, om là p/giác xOy, on là p/giác yOz. ta có:

xOy+yOz=1800

=> 1/2(xOy+yOz)=900

=> 1/2xOy+1/2yOz=900

=> mOy+yOn=900

=> 2 tia p/giác của 2 góc kề bù thì vuông góc với nhau

23 tháng 10 2015

minh chua hoc cai nay ban a

28 tháng 9 2019

A B D E F C

Như hình vẽ trên: DE là pg góc ADB và DF là pg góc ADC

=>ADE = 1/2 (ADB) và ADF = 1/2(ADC)

=>ADE + ADF = EDF = 1/2(ADB + ADC) = 1/2*180 = 90

=>dpcm

28 tháng 9 2019

                                       Giải:

O x' x y t m 0 t' GT xOy và x'Oy kề bù Ot là tia phân giác của góc xOy Ot' là tia phân giác của góc x'Oy KL Ot vuông góc với Ot'

Đặt \(\widehat{xOy}=m^0(0< m^0< 180^0)\)

Hai góc xOy và yOx' là hai góc kề bù nên \(\widehat{xOy}+\widehat{yOx'}=180^0\)do đó \(\widehat{x'Oy}=180^0-\widehat{xOy}=180^0-m^0\)

Theo giả thiết Ot và Ot' lần lượt là tia phân giác của góc xOy và x'Oy nên \(\widehat{tOy}=\frac{1}{2}\widehat{xOy}=\frac{1}{2}m^0\)và \(\widehat{t'Oy}=\frac{1}{2}\widehat{x'Oy}=\frac{1}{2}\left[180^0-m^0\right]\). Tia Oy nằm giữa hai tia Ot và Ot', do đó \(\widehat{tOt}=\widehat{tOy}+\widehat{yOt'}=\frac{1}{2}m^0+\frac{1}{2}\left[180^0-m^0\right]=90^0\)

Vậy \(Ot\perp Ot'\)