Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x,y\right)=x^2+4y^2+1-4xy+2x-4y+y^2-2y+1+1\)
\(=\left(x-2y+1\right)^2+\left(y-1\right)^2+1\ge1>0\)
\(\Rightarrowđpcm\)
Ta có:\(x^2-4xy+6y^2+2x+4\)
\(=\left(x-2y\right)^2+\left(x+x+\frac{8}{x^2}\right)+\left(2y^2+\frac{2}{y^2}\right)\)
\(\ge0+6+4=10\)
\(\Rightarrow x^2-4xy+6y^2+2x\ge10-4=6\)
Dấu bằng xảy ra khi x=2 và y=1.
mk làm 1 câu các câu còn lại tương tự nha :
a) ta có : \(pt\Leftrightarrow x^2-6x+9=-y^2-10y+33\)
\(\Leftrightarrow\left(x-3\right)^2=-y^2-10y+33\ge0\)
\(\Leftrightarrow-5-\sqrt{58}\le y\le-5+\sqrt{58}\) \(\Rightarrow x\in\left\{-12;-11;-10;...;1;2\right\}\) có y thế vào tìm x
2x2+5y2=7xy <=>(x-y)(2x-5y)=0
<=> \(\orbr{\begin{cases}x=y\\2x=5y\end{cases}}\)
thay vào là được
\(A=\left(\sqrt{6\left(x^2-2xy^2+y^3\right)}+\sqrt{6.4x^2y}\right).\frac{1}{\sqrt{6y}}\)
\(=\left(\sqrt{6\left(x^2-xy^2+y^3\right)}+2x\sqrt{6y}\right).\frac{1}{\sqrt{6y}}\)
\(=\left[\sqrt{6}\left(\sqrt{x^2-xy^2+y^3}+2x\sqrt{y}\right)\right].\frac{1}{\sqrt{6y}}=\sqrt{6}\left(\sqrt{x^2-xy^2+y^3}-2x\sqrt{y}\right).\frac{1}{\sqrt{6}\sqrt{y}}\)
\(=\frac{x^2-xy^2+y^3}{\sqrt{y}}-\frac{2x\sqrt{y}}{\sqrt{y}}=\frac{x^2-xy^2+y^3}{\sqrt{y}}-2x\)
mik chỉ lm đến đây đc thui
\(a.x^2-2xy+6y^2-12x+2y+41\)
\(=x^2-2xy+y^2-12x+12y+36+5y^2-10y+5\)
\(=\left(x-y\right)^2-2.6\left(x-y\right)+36+5\left(y-1\right)^2\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2\) ≥ \(0\)
\(b.\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}-\dfrac{2x}{y}-\dfrac{2y}{x}+3\)
\(=\dfrac{x^2}{y^2}-2.\dfrac{x}{y}+1+\dfrac{y^2}{x^2}-2.\dfrac{y}{x}+1+1\)
\(=\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2+1>0\)
\(f\left(x,y\right)=\left(x^2+4y^2-4xy\right)+\left(2x-4y\right)+1+\left(y^2-2y+1\right)+1\)
\(f\left(x,y\right)=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-1\right)^2+1\)
\(f\left(x,y\right)=\left(x-2y+1\right)^2+\left(y-1\right)^2+1\)
\(\left\{{}\begin{matrix}\left(x-2y+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\)=> f(x;y) >=1 >0 => dpcm