\(f\left(x\right)=x^{99}+x^{88}+x^{77}+...+x^{11}+1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2018

Sửa lại đề bài nhé . \(f\left(x\right)=x^{99}+x^{88}+x^{77}+...+x^{11}+1\)

Xét hiệu \(f\left(x\right)-g\left(x\right)=x^9\left(x^{90}-1\right)+x^8\left(x^{80}-1\right)+x^7\left(x^{70}-1\right)+...+x\left(x^{10}-1\right)\)  

                                      \(=x^9\left[\left(x^{10}\right)^9-1\right]+x^8\left[\left(x^{10}\right)^8-1\right]+x^7\left[\left(x^{10}\right)^7-1\right]+...+x\left(x^{10}-1\right)\)

\(\Rightarrow f\left(x\right)-g\left(x\right)⋮\left(x^{10}-1\right)\)

Mà \(x^{10}-1=\left(x-1\right)\left(x^9+x^8+x^7+...+x+1\right)\)

\(\Rightarrow f\left(x\right)-g\left(x\right)⋮g\left(x\right)\Rightarrow f\left(x\right)⋮g\left(x\right)\)

Chúc bạn học tốt

8 tháng 10 2017

f(x) = x99 + x88 + x77 + ... + x11 + 1

=> f(x) = ( x9 )11 + ( x8 )11 + ( x7 )11 + ... + x11 + 111

Lại có : ( x9 )11 là bội của x9

( x8 )11 là bội cuả x8

.................................

x11 là bội của x

111 là bội của 1

Suy ra ( x9 )11 + ( x8 )11 + ... + x11 + 111 là bội của x9 + x8 + ... + x + 1

Hay f(x) chia hết cho g(x)

8 tháng 10 2017

Sai mất rồi bạn ơi, ví dụ như (4+9):(2+3), 4 là bội của 2, 9 là bội của 3 mà (4+9) đâu chia hết cho (2+3) đâu....khocroi

1b)

Đặt \(\overline{abcd}=k^2\left(k\in N;32\le k\le99\right)\)

         Note : nếu k nằm ngoài khoảng giá trị ở trên thì k2 sẽ có ít hơn hoặc nhiều hơn 4 chữ số

Theo bài cho :

\(\overline{ab}-\overline{cd}=1\Rightarrow\overline{ab}=\overline{cd}+1\Rightarrow\overline{abcd}=k^2\Leftrightarrow100\cdot\overline{ab}+\overline{cd}=k^2\)

\(\Leftrightarrow100\cdot\overline{cd}+100+\overline{cd}=k^2\Leftrightarrow101\cdot\overline{cd}=k^2-100\Leftrightarrow101\overline{cd}=\left(k-10\right)\left(k+10\right)\)

\(\Rightarrow\orbr{\begin{cases}k-10⋮101\\k+10⋮101\end{cases}}\)

Mà \(\text{ }(k-10;101)=1\Rightarrow k+10⋮101\)

Lại có : \(32\le k\le99\Rightarrow42\le k+10\le109\)

\(\Rightarrow k+10=101\Rightarrow k=91\Rightarrow\overline{abcd}=91^2=8182\left(tm\right)\)

a)\(f\left(x\right)=x^{100}+x^{99}+x^{98}+...+x+1\)chia cho \(g\left(x\right)=x-1\)

Ta có:\(f\left(x\right)=x^{100}+x^{99}+x^{98}+...+x+1\)

\(=x^{99}\left(x-1\right)+x^{98}\left(x-1\right)+...+\left(x-1\right)-99x+2\)

Vì x-1 chia hết cho x-1 nên \(x^{99}\left(x-1\right)+x^{98}\left(x-1\right)+...+\left(x-1\right)\)chia hết cho x-1

Do đó \(x^{99}\left(x-1\right)+x^{98}\left(x-1\right)+...+\left(x-1\right)-99x+2\) cha x-1 dư 2-99x

Vậy \(f\left(x\right)=x^{100}+x^{99}+x^{98}+...+x+1\)chia cho \(g\left(x\right)=x-1\) dư 2-99x

Không biết có đúng ko nữa

4 tháng 8 2017

a/ Trước tiên ta chứng minh với mọi số tự nhiên \(n\ge1\)

\(x^n-1⋮\left(x-1\right)\)điều này dễ chứng minh nên mình bỏ qua nhé.

Ta có:

\(f\left(x\right)=x^{100}+x^{99}+...+x+1\)

\(=\left(x^{100}-1\right)+\left(x^{99}-1\right)+...+\left(x-1\right)+101\)

Vậy f(x) chia cho g(x) dư 101.