Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<br class="Apple-interchange-newline"><div id="inner-editor"></div>x>2;y>1
Khi đó Pt ⇔36√x−2 +4√x−2+4√y−1 +√y−1=28
theo BĐT Cô si ta có 36√x−2 +4√x−2≥2.√36√x−2 .4√x−2=24
và 4√y−1 +√y−1≥2√4√y−1 .√y−1=4
Pt đã cho có VT>= 28 Dấu "=" xảy ra ⇔
36√x−2 =4√x−2⇔x=11
và 4√y−1 =√y−1⇔y=5
Đối chiếu với ĐK thì x=11; y=5 là nghiệm của PT
\(A=\frac{8}{4+2\sqrt{x}}-\frac{2-\sqrt{x}}{4-x}\)
\(=\frac{8}{2\left(2+\sqrt{x}\right)}-\frac{2-\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(=\frac{4}{2+\sqrt{x}}-\frac{1}{2+\sqrt{x}}\)
\(=\frac{3}{2+\sqrt{x}}\)
\(B=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\frac{1}{\sqrt{x}-\sqrt{y}}-x\)
\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}.\left(\sqrt{x}-\sqrt{y}\right)-x\)
\(=x-y-x=-y\)
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
a,\(\sqrt{x-4+4\sqrt{x-4}+4}\) +\(\sqrt{x-4-4\sqrt{x-4}+4}\)
=\(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\) (vi x>=8)
=\(\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
b, \(\sqrt{x-1+2\sqrt{x\left(x-1\right)}+x}+\sqrt{x-1-2\sqrt{x\left(x-1\right)}+x}\)
=\(\sqrt{x-1}+\sqrt{x}+\left|\sqrt{x-1}-\sqrt{x}\right|\)
=\(\sqrt{x}+\sqrt{x-1}+\sqrt{x}-\sqrt{x-1}\) =\(2\sqrt{x}\)
c,d sai dau bai hay sao y
từ hệ 1 ta có \(\frac{1}{4}+\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{2}{\sqrt[4]{x}}\)
từ hệ 2 ta có \(\frac{1}{4}-\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{1}{\sqrt[4]{y}}\)
cộng trừ 2 pt ta có \(\frac{1}{2}=\frac{2}{\sqrt[4]{x}}+\frac{1}{\sqrt[4]{y}}\) và \(2\left(\frac{2\sqrt{x}+\sqrt{y}}{x+y}\right)=\frac{2}{\sqrt[4]{x}}-\frac{1}{\sqrt[4]{y}}\)
nhân 2 vế ta có \(\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\left(\frac{2}{\sqrt[4]{x}}\right)^2-\left(\frac{1}{\sqrt[4]{y}}\right)^2\)
đến đây cậu tự giải nha
ĐKXĐ: \(x\ge1\)
Ta có: \(\frac{x^2-4}{x}+4+\frac{y^2-4}{y}+4=4\left(\sqrt{x-1}+\sqrt{y-1}\right)\)
Lại có: \(\frac{x^2-4}{x}+4=x+\frac{4x-4}{x}\ge4\sqrt{x-1}\)
Tương tự: \(\frac{y^2-4}{y}+4\ge4\sqrt{y-1}\)
Cộng từng vế: \(\frac{x^2-4}{x}+\frac{y^2-4}{y}+8\ge4\left(\sqrt{x-1}+\sqrt{y-1}\right)\)
Dấu "=" xảy ra khi: x=y=2
Vậy (x;y)=(2'2)
+Xét 2 riêng trường hợp x = 0 và y = 0.
+Xét x, y đều khác 0
Hệ \(\Leftrightarrow\int^{\frac{1}{4}+\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{2}{\sqrt[4]{x}}}_{\frac{1}{4}-\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{1}{\sqrt[4]{y}}}\Leftrightarrow\frac{1}{2}=\frac{2}{\sqrt[4]{x}}+\frac{1}{\sqrt[4]{y}}\text{ }\&\text{ }2.\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{2}{\sqrt[4]{x}}-\frac{1}{\sqrt[4]{y}}\)
\(\Rightarrow\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\left(\frac{2}{\sqrt[4]{x}}+\frac{1}{\sqrt[4]{y}}\right)\left(\frac{2}{\sqrt[4]{x}}-\frac{1}{\sqrt[4]{y}}\right)=\frac{4}{\sqrt{x}}-\frac{1}{\sqrt{y}}\)
Đặt \(\sqrt{y}=t.\sqrt{x}\text{ }\left(t>0\right)\)
Suy ra: \(\frac{2+t}{1+t^2}=4-\frac{1}{t}\Leftrightarrow\left(2t-1\right)\left(2t^2+1\right)=0\Leftrightarrow t=\frac{1}{2}\)
\(\Rightarrow\sqrt{x}=2\sqrt{y}\)
Thay vào phương trình đầu của hệ ban đầu:
\(\sqrt{2\sqrt{y}}\left(\frac{1}{4}+\frac{5\sqrt{y}}{5y}\right)=2\Leftrightarrow\frac{1}{4}+\frac{1}{\sqrt{y}}=\frac{2}{\sqrt{2\sqrt{y}}}\)
\(\Leftrightarrow\frac{1}{4}+2t^2=2t\text{ với }t=\frac{1}{\sqrt{2\sqrt{y}}}\)
Tới đây dễ rồi.
\(\frac{\sqrt{x^4+y^4}+\sqrt{x^4-y^4}}{\sqrt{x^4+y^4}-\sqrt{x^4-y^4}}=\frac{\left(\sqrt{x^4+y^4}+\sqrt{x^4-y^4}\right)^2}{\left(x^4+y^4\right)-\left(x^4-y^4\right)}\)
\(=\frac{x^4+y^4+x^4-y^4+2\sqrt{x^8-y^8}}{2y^4}=\frac{x^4}{y^4}+\sqrt{\frac{x^8-y^8}{y^8}}=\frac{x^4}{y^4}+\sqrt{\frac{x^8}{y^8}-1}\)