Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này bạn chỉ cần chuyển vế biến đổi thôi là được , mình làm mẫu câu 2) :
\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)
\(\Leftrightarrow\frac{a^2n+b^2m}{mn}-\frac{\left(a+b\right)^2}{m+n}\ge0\)
\(\Leftrightarrow\frac{\left(m+n\right)\left(a^2n+b^2m\right)-\left(a^2+2ab+b^2\right).mn}{mn\left(m+n\right)}\ge0\)
\(\Leftrightarrow\frac{a^2mn+\left(bm\right)^2+\left(an\right)^2+b^2mn-a^2mn-2abmn-b^2mn}{mn\left(m+n\right)}\ge0\)
\(\Leftrightarrow\frac{\left(bm-an\right)^2}{mn\left(m+n\right)}\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow bm=an\)
Câu 3) áp dụng câu 2) để chứng minh dễ dàng hơn, ghép cặp 2 .
a) Ta có \(\frac{1}{n+k}>\frac{1}{2n}\)với k=1;2;...;n-1
=> \(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}>\frac{1}{2n}+\frac{1}{2n}+\frac{1}{2n}+....+\frac{1}{2n}=\frac{n}{2n}=\frac{1}{2}\)
Mặt khác ta có \(\frac{1}{n+k}+\frac{1}{n\left(+\left(n+1-k\right)\right)}< \frac{3}{2n}\)
\(\Leftrightarrow3k^2+3nk+n+3k\forall k=1;2;...;n\)
Với k=1 ta có \(\frac{1}{n+1}+\frac{1}{n+n}< \frac{3}{2n}\)
Với k=2 ta có \(\frac{1}{n+2}+\frac{1}{n+\left(n-1\right)}< \frac{3}{2n}\)
..........................................
Với k=n ta có \(\frac{1}{n+n}+\frac{1}{n+1}< \frac{3}{2n}\)
Cộng từng vế của 2 BĐT trên ta được
\(2\left(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}\right)< \frac{3}{2n}+\frac{3}{2n}+....+\frac{3}{2n}=\frac{3n}{2n}=\frac{3}{2}\)
\(\Rightarrow\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}< \frac{3}{4}\)(đpcm)
Không cần chứng minh \(\frac{1}{2}< \frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}\)
\(A=\frac{1+a+a^2+...+a^{n-1}}{1+a+a^2+...+a^n}=1+\frac{1}{a^n}\)
\(B=\frac{1+b+b^2+...+b^{n-1}}{1+b+b^2+...+b^n}=1+\frac{1}{b^n}\)
Vì \(a>b\) nên \(1+\frac{1}{a^n}< 1+\frac{1}{b^n}\)
Vậy \(A< B\)
Chúc bạn học tốt ~
a/ Bạn cứ khai triển biến đổi tương đương thôi (mà làm biếng lắm)
b/ Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)
\(VT=\frac{x^3yz}{y+z}+\frac{y^3zx}{z+x}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
\(VT\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\left(x+y+z\right)\ge\frac{1}{2}.3\sqrt[3]{xyz}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
cảm ơn bạn nhưng nạ có thể giải nốt cậu a hộ mình đc ko
Với \(n=0\) thì bài toán trở thành:
\(\frac{1}{a+b-c}+\frac{1}{a-b+c}+\frac{1}{-a+b+c}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(H\right)\)
Áp dụng BĐT phụ \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Ta có:\(\frac{1}{a+b-c}+\frac{1}{a-b+c}\ge\frac{4}{a+b-c+a-b+c}=\frac{2}{a}\left(1\right)\)
Chứng minh tương tự,ta có:
\(\frac{1}{a-b+c}+\frac{1}{-a+b+c}\ge\frac{2}{b}\left(2\right)\)
\(\frac{1}{-a+b+c}+\frac{1}{a+b-c}\ge\frac{2}{c}\left(3\right)\)
Cộng vế theo vế của \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow H\left(true\right)\)
Với \(n=1\) thì bài toán trở thành:
\(\frac{c}{a+b-c}+\frac{b}{a-b+c}+\frac{a}{-a+b+c}\ge3\left(U\right)\)
Đặt \(-a+b+c=x;a-b+c=y;a+b-c=z\)
\(\Rightarrow a-b+c+a+b-c=y+z\)
\(\Rightarrow2a=y+z\)
\(\Rightarrow a=\frac{y+z}{2}\)
Tương tự,ta có:\(b=\frac{x+z}{2};c=\frac{x+y}{2}\)
Khi đó,ta có:\(\frac{c}{a+b-c}+\frac{b}{a-b+c}+\frac{a}{-a+b+c}=\frac{x+y}{2z}+\frac{y+z}{2x}+\frac{z+x}{2y}\)
\(=\frac{1}{2}\left[\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{y}+\frac{1}{z}\right)+\left(\frac{1}{z}+\frac{1}{x}\right)\right]\)( Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge2\))
\(\ge\frac{1}{2}\left(2+2+2\right)\)
\(=3\left(4\right)\)
Từ \(\left(4\right)\Rightarrow U\left(true\right)\)
Với \(n=2\) thì ta có:
\(\left(a^{n-2}-b^{n-2}\right)\left(a-b\right)\ge0\)
\(\Rightarrow a^{n-1}+b^{n-1}\ge b^{n-2}a+a^{n-2}b\left(5\right)\)
Tương tự,ta có:
\(b^{n-1}+c^{n-1}\ge b^{n-2}c+c^{n-2}b\left(6\right)\)
\(c^{n-1}+a^{n-1}\ge c^{n-2}a+a^{n-2}c\left(7\right)\)
Áp dụng BĐT AM-GM cho 2 số không âm,ta có:
\(\frac{a^n}{-a+b+c}+\left(-a+b+c\right)\cdot a^{n-2}\ge2\sqrt{\frac{a^n}{-a+b+c}\cdot\left(-a+b+c\right)\cdot a^{n-2}}\)
\(\Rightarrow\frac{a^n}{-a+b+c}-a^{n-1}+a^{n-2}b+a^{n-2}c\ge2\cdot a^{n-1}\)
\(\Rightarrow\frac{a^n}{-a+b+c}+a^{n-2}b+a^{n-2}c\ge3a^{n-1}\left(8\right)\)
Tương tự ta có:
\(\frac{b^n}{a-b+c}+ab^{n-2}+cb^{n-2}\ge3b^{n-1}\left(9\right)\)
\(\frac{c^n}{a+b-c}+ac^{n-2}+bc^{n-2}\ge3c^{n-1}\left(10\right)\)
Cộng vế theo vế của \(\left(5\right);\left(6\right);\left(7\right);\left(8\right);\left(9\right);\left(10\right)\RightarrowĐPCM\)
P/S:Bài dài nên e không biết có đúng ko nữa:3
Sau đây là lời giải siêu xàm của em!
Với n = 0 thì ta cần chứng minh \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (1)
Đặt \(\hept{\begin{cases}a+b-c=x\\b+c-a=y\\c+a-b=z\end{cases}}\Rightarrow a=\frac{z+x}{2};b=\frac{x+y}{2};c=\frac{y+z}{2}\)
BĐT (1) trở thành: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\)
Thật vậy,áp dụng BĐT quen thuộc \(\frac{1}{m}+\frac{1}{n}\ge\frac{4}{m+n}\),ta có:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};\frac{1}{y}+\frac{1}{z}\ge\frac{4}{y+z};\frac{1}{z}+\frac{1}{x}\ge\frac{4}{x+z}\)
Cộng theo vế ta được: \(2VT_{\left(1\right)}\ge\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\)
\(\Rightarrow VT_{\left(1\right)}\ge\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\)
Vậy BĐT (1) đúng. (*)
Giả sử điều đó đúng với n = k (\(k\inℕ^∗\)) tức là ta có: \(\frac{a^k}{b+c-a}+\frac{b^k}{c+a-b}+\frac{c^k}{a+b-c}\ge a^{k-1}+b^{k-1}+c^{k-1}\) (2)
Ta đi chứng minh điều đó đúng với n = k + 1 (\(k\inℕ^∗\)). Tức là c/m:
\(\frac{a^{k+1}}{b+c-a}+\frac{b^{k+1}}{c+a-b}+\frac{c^{k+1}}{a+b-c}\ge a^k+b^k+c^k\) (3)
Thật vậy (3) \(\Leftrightarrow\frac{a^k}{b+c-a}.a+\frac{b^k}{c+a-b}.b+\frac{c^k}{a+b-c}.c\ge a^{k-1}.a+b^{k-1}.b+c^{k-1}.c\)
Và bí!:D
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{\left(a+b+c\right)c}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{\left(a+b+c\right)c}\right)=0\)
mà \(\left(\frac{1}{ab}+\frac{1}{\left(a+b+c\right)c}\right)\ne0\)với mọi a,b,c
\(\Rightarrow\)a+b=0\(\Leftrightarrow\)a=-b là hai số đối nhau (1)
từ đó được \(a^n=-b^n\)với mọi n lẻ.
Khi đó \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\Leftrightarrow\frac{1}{c^n}=\frac{1}{c^n}\)luôn đúng (2)
Từ (1)và(2) ta được đpcm
b) với mọi a,b,c ϵ R và x,y,z ≥ 0 có :
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(1\right)\)
Dấu ''='' xảy ra ⇔\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Thật vậy với a,b∈ R và x,y ≥ 0 ta có:
\(\frac{a^2}{x}=\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\left(2\right)\)
⇔\(\frac{a^2y}{xy}+\frac{b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\)
⇔\(\frac{a^2y+b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\)
⇔\(\frac{a^2y+b^2x}{xy}.\left(x+y\right)xy\ge\frac{\left(a+b\right)^2}{x+y}.\left(x+y\right)xy\)
⇔\(\left(a^2y+b^2x\right)\left(x+y\right)\ge\left(a+b\right)^2xy\)
⇔\(a^2xy+b^2x^2+a^2y^2+b^2xy\ge a^2xy+2abxy+b^2xy\)
⇔\(b^2x^2+a^2y^2-2abxy\ge0\)
⇔\(\left(bx-ay\right)^2\ge0\)(luôn đúng )
Áp dụng BĐT (2) có:
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)
Dấu ''='' xảy ra ⇔\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Ta có:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}
\)
= \(\frac{1}{a^2}.\frac{1}{ab+ac}+\frac{1}{b^2}.\frac{1}{bc+ac}+\frac{1}{c^2}.\frac{1}{ac+bc}\)
=\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ab}+\frac{\frac{1}{c^2}}{ac+bc}\)
Áp dụng BĐT (1) ta có:
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ab}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}++\frac{1}{c}\right)^2}{2\left(ab+bc+ac\right)}\)
Mà abc=1⇒\(\left\{{}\begin{matrix}ab=\frac{1}{c}\\bc=\frac{1}{a}\\ac=\frac{1}{b}\end{matrix}\right.\)
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ac}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ac}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=3\sqrt[3]{\frac{1}{1}}=3\)( BĐT cosi )
⇒\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)
⇒\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ac}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{1}{2}.3=\frac{3}{2}\)
Vậy \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Chúc bạn học tốt !!!