\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2020

2. Bạn kiểm tra lại đề: VP = 1/2

Ta có: 

  \(\sqrt{a\left(3a+b\right)}=\frac{1}{4}.2.\sqrt{4a\left(3a+b\right)}\le\frac{1}{4}\left(4a+3a+b\right)=\frac{1}{4}\left(7a+b\right)\)

\(\sqrt{b\left(3b+a\right)}=\frac{1}{4}.2.\sqrt{4b\left(3b+a\right)}\le\frac{1}{4}\left(4b+3b+a\right)=\frac{1}{4}\left(7b+a\right)\)

=> \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{\frac{1}{4}\left(7a+b\right)+\frac{1}{4}\left(7b+a\right)}=\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)

Vậy: \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{1}{2}\) với a, b dương

28 tháng 6 2020

ta có: \(\sqrt{4a\left(3a+b\right)}\le\frac{4a+3a+b}{2}=\frac{7a+b}{2}\)

=> \(\sqrt{a\left(3a+b\right)}\le\frac{7a+b}{4}\)

\(\sqrt{4b\left(3b+a\right)}\le\frac{7b+a}{4}\)

\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{\frac{7a+b}{4}+\frac{7b+a}{4}}=\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)

Dấu "=" xảy ra <=> a = b 

28 tháng 6 2020

Sửa đề: CM: \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{1}{2}\)

Ta có \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}=\frac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\left(1\right)\)

Áp dụng bất đẳng thức Cô-si cho các só dương ta được

\(\hept{\begin{cases}\sqrt{4a\left(3a+b\right)}\le\frac{4a+\left(3a+b\right)}{2}=\frac{7a+b}{2}\left(2\right)\\\sqrt{4b\left(3b+a\right)}\le\frac{4b+\left(3b+a\right)}{2}=\frac{7b+a}{2}\left(3\right)\end{cases}}\)

Từ (2) và (3) \(\Rightarrow\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}\le4a+4b\left(4\right)\)

Từ (1) và (4) => \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{2\left(a+b\right)}{4a+4b}=\frac{1}{2}\)

Dấu "=" xảy ra <=> a=b

4 tháng 7 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}=\sqrt{a}\cdot\sqrt{3a+b}+\sqrt{b}\cdot\sqrt{3b+a}\)

\(\le\sqrt{\left(a+b\right)\left(3a+b+3b+a\right)}=2\left(a+b\right)\)

\(\Rightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)

Xảy ra khi \(a=b\)

5 tháng 7 2017

Thắng Nguyễn ơi, bài này dùng cô si được ko bạn

NV
11 tháng 8 2020

Từ kết quả bài toán suy ngược ra thôi

Muốn giải thích thì cứ phá 2 vế ra rồi so sánh là tìm ra cách tách biểu thức

NV
11 tháng 8 2020

Câu 4 mình ko biết giải quyết kiểu lớp 9 (mặc dù chắc chắn là biểu thức sẽ được biến đổi như vầy)

Đó là kiểu trình bày của lớp 11 hoặc 12 để bạn tham khảo thôi

13 tháng 12 2019

Nguyễn Thị Ngọc Thơ, Nguyễn Việt Lâm, @No choice teen, @Trần Thanh Phương, @Akai Haruma

giúp e vs ạ! Cần gấp!

thanks nhiều!

25 tháng 6 2021

+) Ta có \(\sqrt{4a\left(3a+b\right)}\le\frac{4a+\left(3a+b\right)}{2}=\frac{7a+b}{2}\)

\(\Rightarrow\sqrt{a\left(3a+b\right)}\le\frac{7a+b}{4}\left(2\right)\)

+) Tương tự ta lại có :

\(\sqrt{b\left(3b+a\right)}\le\frac{7b+a}{4}\left(3\right)\)

+) Từ (2) và (3) ta có :

\(VT\left(1\right)\ge\frac{a+b}{\frac{7a+b}{4}+\frac{7b+a}{4}}=\frac{1}{2}\left(đpcm\right)\)

25 tháng 6 2021

Ta có: \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\)

\(=\frac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\ge\frac{2\left(a+b\right)}{\frac{1}{2}\left(4a+3a+b\right)+\frac{1}{2}\left(4b+3b+a\right)}\) (Cauchy)

\(=\frac{2\left(a+b\right)}{4\left(a+b\right)}=\frac{1}{2}\)

Dấu "=" xảy ra khi: a = b

26 tháng 7 2019

Ta có:

\(\frac{a+b}{\sqrt{a\left(a+3b\right)}+\sqrt{b\left(b+3a\right)}}=\frac{2\left(a+b\right)}{\sqrt{4a\left(a+3b\right)}+\sqrt{4b\left(b+3a\right)}}\) (nhân 2 vào cả tử và mẫu)

\(\ge\frac{2\left(a+b\right)}{\frac{4a+a+3b}{2}+\frac{4b+b+3a}{2}}=\frac{4\left(a+b\right)}{8\left(a+b\right)}=\frac{1}{2}^{\left(đpcm\right)}\) (áp dụng BĐT Cô si vào cái mẫu)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}4a=a+3b\\4b=b+3a\end{matrix}\right.\Leftrightarrow a=b\)

26 tháng 7 2019

Áp dụng BĐT Côsi ta có:

\( \sqrt {4a\left( {3a + b} \right)} \le \dfrac{{4a + 3a + b}}{2} = \dfrac{{7a + b}}{2}\\ \Rightarrow \sqrt {a\left( {3a + b} \right)} \le \dfrac{{7a + b}}{4}\\ \sqrt {4b\left( {3b + a} \right)} \le \dfrac{{4b + 3b + a}}{2} = \dfrac{{7b + a}}{2}\\ \Rightarrow \sqrt {b\left( {3b + a} \right)} \le \dfrac{{7b + a}}{4}\\ \Rightarrow \sqrt {a\left( {3a + b} \right)} + \sqrt {b\left( {3b + a} \right)} \le \dfrac{{7b + a + 7a + b}}{4} = 2\left( {a + b} \right)\\ \Rightarrow \dfrac{{a + b}}{{\sqrt {a\left( {3a + b} \right)} + \sqrt {b\left( {3b + a} \right)} }} \ge \dfrac{1}{2} \)

Dấu "=" xảy ra\(\left\{{}\begin{matrix}4a=3a+b\\4b=3b+a\end{matrix}\right.\Leftrightarrow a=b\)

22 tháng 3 2017

Áp dụng BĐT AM-GM ta có: 

\(2\sqrt{a\left(3a+b\right)}=\sqrt{4a\left(3a+b\right)}\le\frac{4a+3a+b}{2}=\frac{7a+b}{2}\)

\(2\sqrt{b\left(3b+a\right)}=\sqrt{4b\left(3b+a\right)}\le\frac{4b+3b+a}{2}=\frac{7b+a}{2}\)

Suy ra \(\sqrt{b\left(3b+a\right)}+\sqrt{a\left(3a+b\right)}\le\frac{8a+8b}{4}=2\left(a+b\right)\)

\(\Rightarrow\frac{a+b}{\sqrt{b\left(3b+a\right)}+\sqrt{a\left(3a+b\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)

NV
20 tháng 6 2020

\(\frac{4\left(a+b\right)}{2\sqrt{4a\left(3a+b\right)}+2\sqrt{4b\left(3b+a\right)}}\ge\frac{4\left(a+b\right)}{4a+3a+b+4b+3b+a}=\frac{4\left(a+b\right)}{8\left(a+b\right)}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(a=b\)