Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> C > 1/200 + 1/200 + 1/200 + ...... + 1/200 ( 181 phân số )
=> C > 181/200 > 180/200 = 9/10
<=> C > 9/10
a, Ta có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};...;\frac{1}{10^2}>\frac{1}{10.11}\)
\(\Rightarrow S>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
Vậy S > 9/22
b, Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{10^2}< \frac{1}{9.10}\)
\(\Rightarrow S>\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)
Vậy S > 9/10
Gọi tổng trên là A
=>A>\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\) =\(\frac{1}{2}-\frac{1}{101}=\frac{99}{202}>\frac{99}{200}\)(đpcm)
Phân số \(\frac{n}{n+1}\) là phân số tối giản rồi bạn nhé