Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Đặt:}S=\frac{1}{7^2}-\frac{1}{7^4}+....-\frac{1}{7^{100}}\Rightarrow49S=1-\frac{1}{7^2}+.....-\frac{1}{7^{98}}\Rightarrow49S+S=50S=\left(1-\frac{1}{7^2}+\frac{1}{7^4}-....-\frac{1}{7^{98}}\right)+\left(\frac{1}{7^2}-\frac{1}{7^4}+....-\frac{1}{7^{100}}\right)=1-\frac{1}{7^{100}}< 1\Rightarrow S< \frac{1}{50}\left(\text{đpcm}\right)\)
Đặt \(S=\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}\)
\(\Rightarrow\dfrac{S}{7^2}=\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}-\dfrac{1}{7^{102}}\)
\(\Rightarrow S+\dfrac{S}{7^2}=\left(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}\right)+\left(\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}-\dfrac{1}{7^{102}}\right)\)
\(\Leftrightarrow\dfrac{50S}{49}=\dfrac{1}{7^2}-\dfrac{1}{7^{102}}< \dfrac{1}{7^2}=\dfrac{1}{49}< \dfrac{1}{50}\)
\(\Leftrightarrow S< \dfrac{1}{50}\)
Vậy \(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}< \dfrac{1}{50}\) (Đpcm)
Đặt \(A=\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}+\dfrac{1}{7^{100}}\)
Ta có:
\(\dfrac{A}{7^2}=\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}+\dfrac{1}{7^{102}}\)
\(\Rightarrow A+\dfrac{A}{7^2}=\left(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}+\dfrac{1}{7^{100}}\right)+\left(\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}+\dfrac{1}{7^{102}}\right)\)
\(\Rightarrow\dfrac{50A}{49}=\dfrac{1}{7^2}-\dfrac{1}{7^{102}}< \dfrac{1}{7^2}=\dfrac{1}{49}\)
\(\Rightarrow A< \dfrac{1}{50}\)
=> ĐPCM.
A= \(\dfrac{1}{3}-\dfrac{3}{5}+\dfrac{5}{7}-\dfrac{7}{9}+\dfrac{9}{11}-\dfrac{5}{7}+\dfrac{3}{5}-\dfrac{9}{11}=\dfrac{1}{3}-\dfrac{7}{9}=\dfrac{3}{9}-\dfrac{7}{9}=-\dfrac{4}{9}\)
\(B=\left(\dfrac{1}{5}+\dfrac{2}{15}+\dfrac{2}{3}\right)+\left(-\dfrac{2}{7}+\dfrac{1}{42}-\dfrac{13}{28}-\dfrac{1}{4}\right)\)
\(=\dfrac{3+2+10}{15}+\dfrac{-2\cdot12+2-13\cdot3-21}{84}\)
=1-82/84
=2/84=1/42
\(C=\dfrac{1}{50}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\right)\)
\(=\dfrac{1}{50}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(=\dfrac{1}{50}-1+\dfrac{1}{50}=\dfrac{1}{25}-1=-\dfrac{24}{25}\)
\(D=\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}{11\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}=\dfrac{3}{11}\)
Đặt: \(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}\)
Ta có: \(\left\{{}\begin{matrix}A>\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{100.101}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{5}-\dfrac{1}{101}>\dfrac{1}{6}\\A< \dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\end{matrix}\right.\)
Vậy \(\dfrac{1}{6}< A< \dfrac{1}{4}\)
\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+........+\dfrac{1}{100^2}\)
Ta có :
\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)
\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)
...................
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Leftrightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+.......+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+......+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}=\dfrac{6}{25}\)
Mà \(\dfrac{1}{6}< \dfrac{5}{26}< \dfrac{1}{4}\)
Mà \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+.........+\dfrac{1}{100^2}< \dfrac{6}{25}\)
\(\Leftrightarrow\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+.......+\dfrac{1}{100^2}< \dfrac{1}{4}\left(đpcm\right)\) \(\left(1\right)\)
a) \(A=\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)
\(=\dfrac{1}{3}-\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)
\(=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)-\left(\dfrac{3}{4}+\dfrac{2}{9}+\dfrac{1}{36}\right)+\dfrac{1}{72}\)
\(=\left(\dfrac{5}{15}+\dfrac{9}{15}+\dfrac{1}{15}\right)-\left(\dfrac{27}{36}+\dfrac{8}{36}+\dfrac{1}{36}\right)+\dfrac{1}{72}\)
\(=1-1+\dfrac{1}{72}\)
\(=0+\dfrac{1}{72}=\dfrac{1}{72}\)
b) \(B=\dfrac{1}{5}-\dfrac{3}{7}+\dfrac{5}{9}-\dfrac{2}{9}+\dfrac{7}{13}-\dfrac{2}{11}-\dfrac{5}{9}+\dfrac{3}{7}-\dfrac{1}{5}\)
\(=\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+\left(-\dfrac{3}{7}+\dfrac{3}{7}\right)+\left(\dfrac{5}{9}-\dfrac{5}{9}\right)-\left(\dfrac{2}{9}-\dfrac{7}{13}+\dfrac{2}{11}\right)\)
\(=0+0+0-\left(\dfrac{286}{1287}-\dfrac{693}{1287}+\dfrac{234}{1287}\right)\)
\(=-\left(-\dfrac{173}{1287}\right)\)
\(=\dfrac{173}{1287}\)
c) \(C=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-.....-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(=\dfrac{1}{100}-\left(\dfrac{1}{100.99}+\dfrac{1}{99.98}+\dfrac{1}{98.97}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(=\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{-49}{50}\)
a/ \(\dfrac{\left(1+2+.....+100\right)\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(6,3.12-21.36\right)}{\dfrac{1}{2}+\dfrac{1}{3}+.......+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+2+3+.....+100\right)\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right).0}{\dfrac{1}{2}+\dfrac{1}{3}+.......+\dfrac{1}{100}}\)
\(=\dfrac{0}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{100}}\)
\(=0\)
B = .................
Xét thừa số 63.1,2 - 21.3,6 = 0 nên B = 0
\(C=\left|\dfrac{4}{9}-\left(\dfrac{\sqrt{2}}{2}\right)^2\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{\dfrac{2}{3}-\dfrac{4}{5}-\dfrac{6}{7}}\right|\)
\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{2\left(\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}\right)}\right|\)
\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{1}{2}\right|=\dfrac{1}{18}+\dfrac{9}{10}=\dfrac{43}{45}\)
Mình làm câu 1,2 trước, câu 3 sau
Câu 1:
\(\sqrt{x^2}=0\)
=> \(\left(\sqrt{x^2}\right)^2=0^2\)
\(\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Câu 2:
\(A=\left(0,75-0,6+\dfrac{3}{7}+\dfrac{3}{12}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+2,75-2,2\right)\)
\(A=\left(\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)
\(A=3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)\cdot11\left(\dfrac{1}{7}+\dfrac{1}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)
\(A=33\cdot\dfrac{491}{1820}\cdot\dfrac{221}{420}=\dfrac{3580863}{764400}\)
A=\(\dfrac{7^2-1}{7^4}+\dfrac{7^2-1}{7^8}+...+\dfrac{7^2-1}{7^{100}}=\left(7^2-1\right)\left(\dfrac{1}{7^4}+\dfrac{1}{7^8}+...+\dfrac{1}{7^{100}}\right)=48\cdot B\)Dễ dàng tính được B( nhân hết với 7 mũ 4 roi trừ đi, chia ra là xong) ra đpcm.
Lên lớp 11 thì ta có dạng tổng quát luôn này(tức là nếu n quá lớn thì có thể coi là xảy ra dấu bằng) \(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^n}-\dfrac{1}{7^{n+2}}< \dfrac{1}{50}\)