K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SL
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
31 tháng 12 2017
tìm số nguyên tố p biết p + 2014 chia hết cho p + 1
T
7 tháng 8 2016
B nguyên tố khác 3 nên b=3k+1 hoặc b=3k+2
B=3k+1 thì A =3n+6027k+2010 chia hét cho 3
B=3k+2 thì A=
21 tháng 1 2019
Giả sử (x;p) = 1 thì ta thấy (y,p) = 1
Ta có: \(x^2\equiv-y^2\left(mod\text{ p}\right)\)
\(\Leftrightarrow x^{4k+2}\equiv-y^{4k+2}\left(mod\text{ p}\right)\)
\(\Leftrightarrow1\equiv-1\left(mod\text{ p}\right)\)(Định lí Fermat)
Do đó \(\left(x;p\right)\ne1\Rightarrow x⋮p\)và dễ thấy \(y⋮p\)(Đpmcm)
QH
0