Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) aaa = 111.a = 37.3.a chia hết cho 37
b) 1ab1 - 1ba1 = 1001 + 10ab - 1001 - 10ba = 10ab - 10ba = 10( 10a + b ) - 10 ( 10 b + a ) = 90a - 90b = 90 ( a-b ) chia hết cho 90.
a) aa = a.11 chia hết cho 11
b) aaa = 100.a+10 a+a = 111.a chia hết cho 37 (vì 111 chia hết cho 37)
c) aaaaaa = 111111.a chia hết cho 37 (vì 111111 chia hết cho 37)
d) abcabc = 100000a+10000b+1000c+100a+10b+c = 100100.a+10010b+1001c
ta thấy 100100.a chia hết cho 11 ( vì 100100 chia hết cho 11)
10010b chia hết cho 11 ( vì 10010 chia hết cho 11)
1001c chia hết cho 11 ( vì 1001 chia hết cho 11)
Vậy 100100.a+10010b+1001c chia hết cho 11 hay abcabc chia hết cho 11
e) C aaaaaa = 111111a chia hết cho 7 ( 111111 chia hết cho 7)
a, ta có \(aa=a.11\Rightarrow aa \vdots 11\)
b,\(aaa=a.111=a.3.37 \vdots 37\Rightarrow aaa\vdots 37\)
Ta có : aa = 11.a mà 11.a có thừa số 11
suy ra 11.a chia hết cho 11 suy ra aa chia hết cho 11
b, Ta có aaa= 111.a = 37.3 .a = 37. ( 3.a)
suy ra 37. ( a.3 ) chia hết cho 37 suy ra aaa chia hết cho 37
a) Ta có : abba = 1000a+100b+10b+1a=(1000+1)a + (100+10)b = 1001a + 110b
Vì 1001 và 110 chia hết cho 11 nên 1001a +110b chia hết cho 11 => abba chia hết cho 11=>abba là B(11)
Câu b và câu c cũng z
ta co abab=1000.a+100.b+10.a+a.1 =1001.a+11.b =110.a+891.a (a+b).110+891.a ta thay 110 chia het cho 11 nen abab chia het cho 11
a)
Gọi số tự nhiên có 3 chữ số giống nhau là bbb (b khác 0; b< 10)
Ta có:
bbb = b . 111 = b . 37 .3
=> b chia hết cho 37
Vậy mọi số tự nhiên có 3 chữ số giống nhau đều chia hết cho 37
b)
Ta có
1ab1 = 1000 + a .100 + b .10 + 1
1ba1 = 1000+ b .100 +a .10 +1
1ab1-1ba1 = 1000 + a .100 + b .10 + 1 - 1000 + b.100 + a .10 + 1
1ab1-1ba1 = 1001+a .100+ b.10 - 1001 + b .100 + a .10
1ab1 -1ba1 = a .100+ b.10 - b .100+ a.10
1ab1 -1ba1 = a.(100- 10) - b .( 100-10)
1ab1 - 1ba1 = a .90 - b .90
1ab1-1ba1 = 90(a-b)
=> 1ab1 -1ba1 chia hết cho 90
Vậy hiệu giữa số có dạng 1ab1 và số được viết bởi chính các chữ số đó nhưng theo thứ tự ngược lại thì chia hết cho 90
a)
abba=a.1000+b.100+b.10+a
=1001a +101b
=a.91.11+b.11.10
=11.(a.91 +b.10)
vì 11⋮ 11 => 11.(a.91+b.10)
ĐPCM
ta có : ababab = a + b + a + b + a + b
= ( a + a + a ) + ( b + b + b )
= 3a + 3b
= 3 ( a + b )
Vì 3 chia hết cho 3 => 3 ( a + b ) chia hết cho 3
=> ababab chia hết cho 3 ( đpcm )
Ta có : ababab = ab0000 + ab00 + ab
= ab.10 000 + ab . 100 + ab
= ab.(10 000 + 100 + 1)
= ab.10101
= ab . 273 . 37 \(⋮\)37
=> ababab \(⋮\)37(đpcm)
thánh kều nhen