Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(x^2+3x+5\)
\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
=> đpcm
A) x2+4y22+z22-4x-6z+15>0 <=> (x2-2×2×x+22)+4y2+(z2-2×3×z+32) +(15 -22-32) >0
<=>(x-2)2+4y22+(z-3)2
B) giải
(2X)2+ 2×2X×1 +1 >=0 với mọi X ( (2x+1)2 )
=> (2x+1)2+2 >0
a) \(x^2-4x+5\)
= \(\left(x^2-2.2x+4\right)+1\)
= \(\left(x-2\right)^2+1\)
Ta co: \(\left(x-2\right)^2>=0\)
=>\(\left(x-2\right)^2+1>=1>0\)
b) \(x^2-4xy+5y^2\)
=\(\left(x^2-4xy+4y^2\right)+y^2\)
= \(\left(x-2y\right)^2+y^2\)
Ta co: \(\left(x-2y\right)^2>=0\)
\(y^2>=0\)
=> \(\left(x-2y\right)^2+y^2>=0\)
c) \(3-2x-x^2\)
= \(-\left(x^2+2x\right)+3\)
= \(-\left(x^2+2.1x+1-1\right)+3\)
= \(-\left(x+1\right)^2+4\)
=
Hình như câu này sai đề ...
Vì \(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\) với mọi giá trị của \(x\) nên giá trị của biểu thức luôn luôn âm với mọi giá trị khác 0 và khác -3 của \(x\)
a) Ta có \(2x^2-8x+13=2x^2-8x+8+5\)
\(=2\left(x^2-4x+4\right)+5\)
\(=2\left(x-2\right)^2+5\ge5\forall x\)
Giả sử trước khi làm nhé
\(a)\)\(2x^2-8x+13>0\)
\(\Leftrightarrow\)\(4x^2-16x+26>0\)
\(\Leftrightarrow\)\(\left(4x^2-16+16\right)+10>0\)
\(\Leftrightarrow\)\(\left(2x-4\right)^2+10\ge10>0\) ( luôn đúng )
Vậy ...
\(b)\)\(-2+2x-x^2< 0\)
\(\Leftrightarrow\)\(x^2-2x+2>0\)
\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+1>0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2+1\ge1>0\) ( luôn đúng )
Vậy ...
Chúc bạn học tốt ~
a) \(2x\left(2x+5\right)-4x\left(x-3\right)=7\)
\(4x^2+10x-4x^2+12x=7\)
\(22x=7\Rightarrow x=0,31\)
b) \(\left(x+2\right)\left(x-2\right)-\left(x+1\right)^2=2\)
\(\left(x^2-4\right)-\left(x^2+2x+1\right)=2\)
\(x^2-4-x^2-2x-1=2\)
\(-2x=7\Rightarrow x=-3,5\)
c) \(\left(x+2\right)\left(x-1\right)-\left(x+3\right)\left(x-2\right)=0\)
\(x^2-x+2x-2-x^2+2x+3x-6=0\)
\(6x=8\Rightarrow x=1,3\)
b)
\(-x^2+2x-6=-\left(x^2-2x+6\right)\)
\(=-\left(x^2-2x+1+5\right)=-\left(x+1\right)^2-6\)
vì \(\left(x-1\right)^2\ge0\)với mọi \(x\in R\)
nên \(-\left(x-1\right)^2\le0\)với mọi \(x\in R\)
do đó \(-\left(x-1\right)-5< 0\)với mọi \(x\in R\)
vậy \(-x^2+2x-6< 0\)với mọi \(x\in R\)
a) \(x^2+2x+7=x^2+2x+1+6\)
\(=\left(x+1\right)^2+6\)
vì \(\left(x+1\right)^2\ge0\)với mọi \(x\in R\)
nên \(\left(x+1\right)^2+6>0\)với mọi \(x\in R\)
vậy \(x^2+2x+7>0\)với mọi \(x\in R\)