Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)
ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm )
dấu " = " xẩy ra khi x = y > 0
vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0
2/ \(3\sqrt[3]{\left(x+y\right)^4\left(y+z\right)^4\left(z+x\right)^4}=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(\ge6\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{xyz}\)
\(\ge6.\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\sqrt[3]{xyz}\)
\(\ge\frac{16}{3}\left(x+y+z\right)3\sqrt[3]{x^2y^2z^2}\sqrt[3]{xyz}=16xyz\left(x+y+z\right)\)
3/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-x}\le\sqrt{x}\\2\sqrt{xy-x}+\sqrt{x}=1\end{cases}}\)
Dễ thấy
\(\hept{\begin{cases}0\le x\le1\\y\ge1\end{cases}}\)
Từ phương trình đầu ta có:
\(\sqrt{x}-\sqrt{xy}\ge\sqrt{1-x}\ge0\)
\(\Leftrightarrow y\le1\)
Vậy \(x=y=1\)
Bạn ghi sai đề thì phải giả thiết phải là \(x+y+z+\sqrt{xyz}=4\)
Khi đó suy ra \(4\left(x+y+z\right)+4\sqrt{xyz}=16\)
Ta có: \(x\left(4-y\right)\left(4-z\right)=x[16-4\left(y+z\right)+yz]=x[4\left(x+y+z\right)+4\sqrt{xyz}-4\left(y+z\right)+yz]\)
\(=x\left(4x+4\sqrt{xyz}+yz\right)=x\left(2\sqrt{x}+\sqrt{yz}\right)^2\)
\(\Rightarrow\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x}\left(2\sqrt{x}+\sqrt{yz}\right)=2x+\sqrt{xyz}\)
tương tự \(\left\{{}\begin{matrix}\sqrt{y\left(4-z\right)\left(4-x\right)}=2y+\sqrt{xyz}\\\sqrt{z\left(4-x\right)\left(4-y\right)}=2z+\sqrt{xyz}\end{matrix}\right.\)
Cộng lại ta được VT\(=\) \(2\left(x+y+z+\sqrt{xyz}\right)+\sqrt{xyz}\) \(=8+\sqrt{xyz}\)(điều phải chứng minh)