Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=x2-6x+10
\(A=\left(x-3\right)^2+1>1\)
\(\Rightarrow A\) luôn dương
A = x2 - 6x + 10
= ( x2 - 6x + 9 ) + 1
= ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
B = x2 + x + 5
= ( x2 + x + 1/4 ) + 19/4
= ( x + 1/2 )2 + 19/4 ≥ 19/4 > 0 ∀ x ( đpcm )
C = 4x2 + 4x + 2
= 4( x2 + x + 1/4 ) + 1
= 4( x + 1/2 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
D = ( x - 3 )( x - 5 ) + 4
= x2 - 8x + 15 + 4
= ( x2 - 8x + 16 ) + 3
= ( x - 4 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )
E = x2 - 2xy + 1 + y2
= ( x2 - 2xy + y2 ) + 1
= ( x - y )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )
a.4x^2-12x+15 = 0; vô nghiệm vì vế trái = 4x^2-12x+15=(2x)^2-2.3.(2x)+3^2+6=(2x-3)^2+6>=6 nên vế trái>0
b) Ta có 6x - x2 - 10
= -x2 - 3x - 3x - 10
= -x(x + 3) - 3x - 9 - 1
= -x(x + 3) - 3(x + 3) - 1
= -(x + 3)(x + 3) - 1
= -(x + 3)2 - 1 = -[(x + 3)2 + 1]
Ta có \(\left(x+3\right)^2+1\ge\forall x\Rightarrow-\left[\left(x+3\right)^2+1\right]\le-1< 0\)
=> 6x - x2 - 10 < 0 \(\forall\)x
6x4 - x3 - 7x2 + x + 1 = 0
=> (x + 1)(3x + 1)(x - 1)(2x - 1) = 0
=> x + 1 = 0 => x = -1
hoặc 3x + 1 = 0 => x = -1/3
hoặc x - 1 = 0 => x = 1
hoặc 2x - 1 = 0 => x = 1/2
Vậy x = -1, x = -1/3, x = 1 , x = 1/2
a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1>0\forall x\)
b) \(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)\)
\(=-\left(x+2\right)^2-1\le-1\le0\forall x\)
(đpcm)
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
a/ 2x2+5x+10=x2+5x-11
=> 2x2+5x+10-x2-5x+11=0
=> x2+21=0
ma x2+21≥21>0 => pt vo ngiem
b/ 2(x2-3x)+7=0
=> 2\(\left(x^2-2.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\right)+7=0\)
=> 2\(\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}+7=0\)
=> 2\(\left(x-\dfrac{3}{2}\right)^2+\dfrac{5}{2}\ge\dfrac{5}{2}>0\)
=> pt vo ngiem
Ta có :
\(B\left(x\right)=-x^2+6x-10\)
\(\Leftrightarrow B\left(x\right)=-\left(x^2-6x+9\right)-1\)
\(\Leftrightarrow B\left(x\right)=-\left(x^2-3x-3x+9\right)-1\)
\(\Leftrightarrow B\left(x\right)=-\left[x\left(x-3\right)-3\left(x-3\right)\right]-1\)
\(\Leftrightarrow B\left(x\right)=-\left(x-3\right)^2-1< 0\forall x\)
Vậy B ( x ) không có nghiệm.
\(B\left(x\right)=-x+6x-10\)
\(B\left(x\right)=\left(-x+6x-9\right)-1\)
\(B\left(x\right)=-\left(x-6x+9\right)-1\)
\(B\left(x\right)=-\left(x-3\right)^2-1\)
\(\text{Vì }\left(x-3\right)^2\ge0\)
\(\text{Nên }-\left(x-3\right)^2\le0\)
\(\text{Do đó }-\left(x-3\right)^2-1\le-1\)
\(\text{Mà }-1< 0\)
\(\Rightarrow-\left(x-3\right)^2-1< 0\)
\(\Leftrightarrow B\left(x\right)< 0\text{ hay }B\left(x\right)\text{ không thể bằng 0}\)
\(\text{Vậy B(x) không thể có nghiệm }\)