Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi a+4b là c, 10a+b là d.Ta có:
a+4b= c
10a+b = d
=> 3a+ 12b =3c
10a + b = d
=> 3c+d = 10a+3a+12b+b = 13a + 13b =13(a+b) => 3c + d chia hết cho 13
Mà: 3c+d chia hết cho 13
3c chia hết cho 13
=> d chia hết cho 13 hay 10a+ b chia hết cho 13
a) Ta có 3n+2-2n+2+3n-2n=(...34)n x32-(...24)n x22+(...34)n-(...24)n
= (...81)nx9-(...16)nx4+(...81)n -(...16)n
=(...9)n-(...4)n+(..1)n-(...6)n
=(....0)n Có chử số tận cùng là 0 nên chia hết cho 10
Vậy...
Ta có:3n+2-2n+2+3n -2n=3n.9-2n-1.8+3n-2n-1.2=3n.(9+1)-2n-1.(8+2)=3n.10-2n.10
=(3n-2n).10 chia hết cho 10
=>3n+2-2n+2+3n -2n chia hết cho 10
Đáp án:
Giải thích các bước giải:
3^(n+2)-2^(n+2)+3^n-2^n
=3^n.9+3^n-2^n.4-2^n
=3^n(9+1)-2^n(4+1)
=3^n.10-2^n.5
=3^n.10-2^(n-1).10
=10(3^n-2^(n-1))
Bài làm:
Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)\)
\(=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
=> đpcm