Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : abcdeg = abc . 1000 + deg = 999 . abc + abc + deg = 37 . 27 . abc + ( abc + deg )
Do 37 . 27 . abc chia hết cho 37 nên nếu abc + deg chia hết cho 37 thì abcdeg chia hết cho 37
HỌC TỐT !
Ta có:
abcdeg=1000.abc+deg
=(999+1)abc+deg
=999.abc+abc+deg
=37.27(abc+deg)
Vì 37 chia hết cho 37;
abc+deg chia hết cho 37( bài cho)
=> 37.27(abc+deg) chia hết cho 37
Hay abcdeg chia hết cho 37
Vậy nếu abc+deg chia hết cho 37 thì abcdeg chia hết cho 37
Ta có: abcdeg = abc.1000 + deg = 999.abc + abc + deg = 37.27.abc + (abc + deg).
Do 37.27.abc chia hết cho 37 nên nếu abc + deg chia hết cho 37 thì thì abcdeg chia hết cho 37.
abcdeg= 1000abc + deg= 999abc +abc + deg = 27.37.abc + (abc+deg)
mà: 27.37.abc chia hết cho 37 (1)
abc+deg chia hết cho 37 (bài cho) (2)
từ (1) và (2) => 27.37.abc +(abc+deg)=> abcdeg chia hết cho 37 (ĐPCM)
Giải
abcdeg = 100abc + deg
= 999abc +( abc + deg )
= 37.27abc+ ( abc + deg )
abcdeg chia hết cho 37 => abc + deg cũng chia hết cho 37
37.27abc chia hết cho 37; abc+ deg chia hết cho 37
=> abcdeg chia hết cho 37
=> điều phải chứng minh
K nha ^.*
Đặt \(abc+deg=37k\)
Ta có :
\(abcdeg=1000abc+deg\)
\(=999abc+\left(abc+deg\right)\)
\(=37.\left(27abc\right)+37k\)
\(=37\left(27abc+k\right)\)chia hết cho 37
Vậy ...
Ta có : abcdeg = abc000 + deg
= abc . 100000 + deg
= abc . 99999 + (abc + deg)
Mà - 99999 chia hết cho 37 nên abc . 99999 chia hết cho 37
- abc + deg chia hết cho 37
Vậy abcdeg chia hết cho 37 (đpcm)
k gium milk giai de hieu chinh xac milk hoc lop 7 con bn ko tin k di se biet
Đề : CMR abcdeg chia hết cho 37 biết abc + deg chia hết cho 37
Bài làm :
Ta có : abcdeg = abc . 1000 + deg = 999 . abc + abc + deg
= 37 . 27 . abc + ( abc + deg )
Do 37 . 27 . abc chia hết cho 37 nên nếu abc + deg chia hết cho 37 thì abcdeg chia hết cho 37
HỌC TỐT !
Ta có : \(\overline{abcdeg}=\overline{abc000}+\overline{deg}\)
\(=\overline{abc}.1000+\overline{deg}\)
\(=\overline{abc}.999+\overline{abc}+\overline{deg}\)
\(=\overline{abc}.999+\left(\overline{ábc}+\overline{deg}\right)\)
Vì 999\(⋮\)37 nên \(\overline{abc}.999⋮37\)
\(\Rightarrow\overline{abc}+\overline{deg}⋮37\)
Vậy \(\overline{abc}+\overline{deg}⋮37.\)