K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2015

Ta có : 10.abc = 10(100a+10b+1c)=1000a+100b+10c=100b+10c+b+999b=bca +37.27a

Vì 37 chia hết cho 37 nên 37.27a chia hết cho 37                   (1)

Mà abc chia hết cho 37 nên 10.abc chia hết cho 37                (2)

Từ (1) và (2) => bca chia hết cho 37

           100.abc = 100(100a+10b+c)=10000a+1000b+100c=100c+10a+1b+9990a+999b

                                                                                    =cab +999(10a+b)=cab +37.27ab

Vì 37 chia hết cho 37 nên 37.27ab chia hết cho 37      (3)

Mà abc chia hết cho 37 nên 100abc chia hết cho 37    (4)

Từ (3) và (4)=> cab chia hết cho 37

          Vậy nếu abc chia hết cho 37 thì bca và cab chia hết cho 37

Nhớ **** cho mình nhé

27 tháng 1 2016

kho nhi

30 tháng 6 2015

A= 100a+10b+c+100b+10c+a+100c+10a+b=111(a+b+c)=3.37.(a+b+c)

Số chính phương khi phân tích ra thừa số nguyên tố luôn có số mũ chẵn=> a+b+c chia hết cho 3.37 

Nhưng 0<a+b+c<=27

=>....

16 tháng 10 2016

gạch ngang trên đầu nhá

16 tháng 10 2016

chiu roi

ban oi

tk nhe@@@@@@@@@@@@@

xin do

ai tk minh minh tk lai

29 tháng 1 2018

Ta có abc chia hết cho 37 thì abc0 chia hết cho 37. 

-> a000 + bc0 chia hết cho 37 

-> 1000xa +bc0 chia hết cho 37 

-> 999xa + a + bc0 chia hết cho 37 

-> 27x37xa + bca chia hết cho 37 

Do 27x37xa chia hết cho 37 nên bca chia hết cho 37.

Chúc bạn học tốt 

28 tháng 3 2021

cho mk hỏi x là dấu nhân hay chữ vs ạ

 

24 tháng 1 2019

S = 100a+10b+c + 100b+10c+a + 100c+10a+b = 111(a+b+c) = 3.37(a+b+c)
=> Để S là số chính phương thì a+b+c = 3.37 = 111
mà 10 > a,b,c > 0 => Max(a+b+c) = 9+9+9 = 27 < 111
Vậy S không phải số chính phương

24 tháng 1 2019

lưu ý điều kiện có a,b,c > 0 nên không thể cho S = 0 hay a+b+c = 0 là số chính phương khi và chỉ khi a=b=c=0

10 tháng 3 2017

\(a\), \(abc⋮37\Rightarrow cba⋮37\)

\(Ta\) \(có\) :

\(abc⋮37\Rightarrow100a+10b+c⋮37\)

\(abc⋮37\Rightarrow10abc⋮37\)

\(\Rightarrow1000a+100b+10c⋮37\)

\(\Rightarrow999a+\left(100b+10c+a\right)⋮37\)

=> \(999a+bca⋮37\)

\(Mà\) \(999a⋮37\)

\(\Rightarrow bca⋮37\)

\(\Rightarrowđpcm\)

\(b\)) \(Lại\) \(có\) : \(bca⋮37\) \(\left(cmt\right)\)

\(\Rightarrow10bca⋮37\)

\(\Rightarrow1000b⋮100c+10a+b⋮37\)

\(\Rightarrow999b+100c+10a+b⋮37\)

\(999b⋮37\)

\(\Rightarrow999b⋮37\)

\(\Rightarrowđpcm\)