CMR √a+√b+√c>=ab+bc+caa+b+c>=ab+bc+ca vs a, b, c >0

 

 

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2020

lol

10 tháng 1 2020

không hiểu kiểu gì

13 tháng 12 2016

Áp dụng BĐT cosi ta có

\(\hept{1\begin{cases}\frac{ab}{c}+\frac{bc}{a}\ge2b\\\frac{bc}{a}+\frac{ca}{b}\ge2c\\\frac{ca}{b}+\frac{ab}{c}\ge2a\end{cases}}\)

Cộng vế theo vế ta được

\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)

Chia 2 bên cho 2 là ra cái cần chứng minh

Thiếu rồi bác alibaba nguyễn 

Áp dụng BĐT cô - si ta có : 

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2\sqrt{b^2}=2b\)

Tương tự CM : 

 \(\frac{bc}{a}+\frac{ca}{b}\ge2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2a\)

Nên : \(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

Vậy \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)

21 tháng 4 2018

Nếu có cái này thì mk làm được nè !

a,b,c là 3 cạnh tam giác

Ta có;

\(\left\{{}\begin{matrix}a< b+c\left(BĐT\Delta\right)\Leftrightarrow a^2< ab+ac\\b< a+c\left(BĐT\Delta\right)\Leftrightarrow b^2< ab+bc\\c< a+b\left(BĐT\Delta\right)\Leftrightarrow c^2< ac+bc\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\) (ĐPCM)

21 tháng 4 2018

Đề có thiếu gì nữa không? a,b,c là gì?

26 tháng 1 2019

mik ví dụ 1 biểu thức nha

a(a+b+c)+bc/b+c=a^2+ab+ac+bc/b+c=(a+c)(a+b)/b+c

tương tự với mấy biểu thức còn lại

26 tháng 1 2019

cái bài này mik làm rồi mà giờ ko nhớ nữa

5 tháng 3 2018

a) Áp dụng bất đẳng thức AM-GM ta có:

\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{abc^2}{ab}}=2\sqrt{c^2}=2\left|c\right|=2c\left(c>0\right)\)

Chứng minh tương tự ta được: \(\left\{{}\begin{matrix}\dfrac{ac}{b}+\dfrac{ab}{c}\ge2a\\\dfrac{bc}{a}+\dfrac{ab}{c}\ge2b\end{matrix}\right.\)

Cộng theo vế: \(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\ge a+b+c\left(đpcm\right)\)

Áp dụng liên tiếp AM-GM và Cauchy-Schwarz ta được:

\(\dfrac{ab}{a+b}=\dfrac{ab+b^2-b^2}{a+b}=\dfrac{b\left(a+b\right)}{a+b}-\dfrac{b^2}{a+b}=b-\dfrac{b^2}{a+b}\)

Chứng minh tương tự:

\(\left\{{}\begin{matrix}\dfrac{bc}{b+c}=\dfrac{bc+c^2-c^2}{b+c}=\dfrac{c\left(b+c\right)}{b+c}-\dfrac{c^2}{b+c}=c-\dfrac{c^2}{b+c}\\\dfrac{ac}{c+a}=\dfrac{ac+a^2-a^2}{c+a}=\dfrac{a\left(c+a\right)}{c+a}-\dfrac{a^2}{c+a}=a-\dfrac{a^2}{c+a}\end{matrix}\right.\)

Cộng theo vế:

\(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ac}{a+c}=a+b+c-\left(\dfrac{b^2}{a+b}+\dfrac{c^2}{b+c}+\dfrac{a^2}{a+c}\right)\le\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=a+b+c-\dfrac{a+b+c}{2}=\dfrac{a+b+c}{2}\left(đpcm\right)\)

b)Đặt \(A=\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)

\(A=\dfrac{a\left(a+b\right)-a^2}{a+b}+\dfrac{b\left(b+c\right)-b^2}{a+b}+\dfrac{c\left(c+a\right)-c^2}{c+a}\)

\(A=a+b+c-\dfrac{a^2}{a+b}-\dfrac{b^2}{b+c}-\dfrac{c^2}{c+a}\)

Lại có:\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)

\(\Rightarrow A\le a+b+c-\dfrac{a+b+c}{2}=\dfrac{a+b+c}{2}\)

\(\Rightarrowđpcm\)

17 tháng 1 2020

Ta có: \(\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\frac{xy}{x+y}\le\frac{1}{4}\left(x+y\right)\)

\(\Rightarrow\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{1}{4}\left(a+b\right)+\frac{1}{4}\left(b+c\right)+\frac{1}{4}\left(c+a\right)\)

\(=\frac{a+b+c}{2}\)

Dấu \("="\) xảy ra \(\Leftrightarrow a=b=c\)

NV
25 tháng 3 2019

Biến đổi tương đương:

\(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\ge3\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b=c\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{ab+ac+bc}\ge3\)

b/ \(VT=\frac{\left(a+b+c\right)^2}{ab+ac+bc}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}=\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}\)

\(\Rightarrow VT\ge\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+ac+bc\right)}{9\left(ab+ac+bc\right)\left(a+b+c\right)^2}}\ge\frac{8.3}{9}+\frac{2}{3}=\frac{10}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

25 tháng 3 2019

Cám ơn

27 tháng 3 2020

a/Xét hiệu ta có: \(\frac{a^3}{b}+\frac{b^3}{b}-a^2-ab=\left(a+b\right)\left(\frac{a^2-ab+b^2}{b}\right)-a\left(a+b\right)\)

\(=\left(a+b\right)\left(\frac{a^2}{b}-2a+b\right)=\left(a+b\right)\left(\frac{a}{\sqrt{b}}+\sqrt{b}\right)^2\ge0\)

\(\RightarrowĐPCM\)

b/Tương tự ở câu a, ta cũng có:

\(\frac{a^3}{b}\ge a^2+ab-b^2\left(1\right),\frac{b^3}{c}\ge b^2+bc-c^2\left(2\right),\frac{c^3}{a}\ge c^2+ca-a^2\left(3\right)\)

Cộng (1),(2) và (3) \(VT\ge a^2+ab-b^2+b^2+bc-c^2+C^2+bc-a^2=ab+bc+ca\left(ĐPCM\right)\)

6 tháng 7 2016

Trả lời hộ mình đi