K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2017

 (a + b + c)^3 - 27abc = (3a + b + c)/2 . (b - c)^2 + (3b + a + c)/2 . (a - c)^2 + (3c + a + b)/2 . (a - b)^2

tk mk nha

8 tháng 1 2017

Mình chịu, Mình không thể Chứng minh cái gần đúng thành đúng được

NV
17 tháng 4 2022

\(\left(a+a+b\right)\left(b+b+c\right)\left(c+c+a\right)\ge3\sqrt[3]{a^2b}.3\sqrt[3]{b^2c}.3\sqrt[3]{c^2a}=27abc\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

NV
25 tháng 5 2019

a/ Biến đổi tương đương:

\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)

\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)

\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)

Vậy BĐT ban đầu đúng

Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)

Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương

Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:

\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)

\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)

\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)

18 tháng 3 2016

Chuyển vế : 
a^4 - a^3 + b^4 - b^3 + c^4 - c^3 >= 0 
<=> a^3(a - 1) + b^3(b - 1) + c^3(c - 1) - (a - 1) - (b - 1) - (c - 1) >= 0 (a + b + c = 3) 
<=> (a - 1)(a^3 - 1) + (b - 1)(b^3 - 1) + (c - 1)(c^3 - 1) >= 0 
<=> (a - 1)^2(a^2 + a + 1) + (b - 1)^2(b^2 + b + 1) + (c -1)^2(c^2 + c + 1) >= 0 (*) 
Dễ chứng minh được a^2 + a + 1 > 0 
=> (*) đúng 
=> ĐPCM

16 tháng 4 2017

\(a^3+b^3+c^3\ge3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc\ge0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\ge0\)(1)

Vì \(a;b;c>0\Rightarrow a+b+c>0\) (2)

Do đó ta cần phải CM : \(a^2+b^2+c^2-ab-ac-bc\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)Luôn đúng (3)

Từ (2) ; (3) => BĐT (1) đúng

\(\Rightarrow a^3+b^3+c^3\ge3abc\) đúng (ĐPCM)

16 tháng 4 2017

e cảm ơn ạ